Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 27: 101043, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34179514

RESUMO

The macrolide antibiotic azithromycin (AZM) is widely used for respiratory infections and has been suggested to be a possible treatment for the Coronavirus Disease of 2019 (COVID-19). However, AZM-associated QT interval prolongation and arrhythmias have been reported. Integrated mechanistic information on AZM actions on human ventricular excitation and conduction is lacking. Therefore, this study was undertaken to investigate the actions of AZM on ventricular cell and tissue electrical activity. The O'Hara- Virag-Varro-Rudy dynamic (ORd) model of human ventricular cells was modified to incorporate experimental data on the concentration-dependent actions of AZM on multiple ion channels, including INa, ICaL, IKr, IKs, IK1 and INaL in both acute and chronic exposure conditions. In the single cell model, AZM prolonged the action potential duration (APD) in a concentration-dependent manner, which was predominantly attributable to IKr reduction in the acute condition and potentiated INaL in the chronic condition. High concentrations of AZM also increased action potential (AP) triangulation (determined as an increased difference between APD30 and APD90) which is a marker of arrhythmia risk. In the chronic condition, the potentiated INaL caused a modest intracellular Na + concentration accumulation at fast pacing rates. At the 1D tissue level, the AZM-prolonged APD at the cellular level was reflected by an increased QT interval in the simulated pseudo-ECG, consistent with clinical observations. Additionally, AZM reduced the conduction velocity (CV) of APs in the acute condition due to a reduced INa, and it augmented the transmural APD dispersion of the ventricular tissue, which is also pro-arrhythmic. Such actions were markedly augmented when the effects of chronic exposure of AZM were also considered, or with additional IKr block, as may occur with concurrent use of other medications. This study provides insights into the ionic mechanisms by which high concentrations of AZM may modulate ventricular electrophysiology and susceptibility to arrhythmia.

2.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278629

RESUMO

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Assuntos
Bradicardia/genética , Relógios Circadianos/fisiologia , Eletrocardiografia/métodos , Regulação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , RNA/genética , Nó Sinoatrial/fisiopatologia , Animais , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Camundongos
3.
Nat Commun ; 11(1): 5555, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144559

RESUMO

It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Assuntos
Relógios Biológicos , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Nó Sinoatrial/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Relógios Biológicos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/complicações , Bradicardia/patologia , Carbacol/farmacologia , Eletrocardiografia , Feminino , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Nó Sinoatrial/fisiopatologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA