Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2404303, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422106

RESUMO

The realization of fast carrier transport can effectively enhance photocatalytic performance. A core-shell structure of ZnO and In2O3 is successfully constructed by using MIL-68 (In) and ZIF-8 as a substrate, forming a heterojunction. This MOF-derived core-shell heterojunction inherits the advantages of ZIF-8, with pores facilitating carriers transfer to the surface for reactions and a large specific surface area providing more active sites. This Z-scheme heterojunction of ZnO and In2O3 can effectively separate and improve the utilization of photogenerated carriers. The well-designed interface of the core-shell structure achieves the rapid transfer of photogenerated carriers. The photocatalytic degradation capability of ZnO@ In2O3 is enhanced by the synergistic effect of Z-scheme heterojunction and core-shell structure. This work provides insight into the investigation of constructing core-shell heterojunctions.

2.
Chem Commun (Camb) ; 60(81): 11466-11482, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39279413

RESUMO

CO2 hydrogenation to methane, namely, CO2 methanation or Sabatier reaction, is a significant approach to convert CO2 and H2 to storable and transportable CH4. Low reaction temperature is the key to industrialization and has attracted plenty of research interest. Ni-based catalysts are commonly utilized owing to their favorable properties of excellent activity and economical price. However, it is still challenging to perform the Sabatier reaction under temperatures lower than 300 °C owing to the inertness of CO2. Hence, in this article, we summarize the advances of four important design principles of the Ni-based catalysts for low-temperature Sabatier reaction, namely, optimizing Ni active sites, tuning support properties, considering metal-support interactions, and choosing a suitable preparation method, which provides deep insights for the design of low-temperature CO2 methanation catalysts. Additionally, typical low-temperature CO2 methanation reaction mechanisms with *CO or *HCOO as the main intermediate and perspectives on this topic have been provided. We highlight that the rare-earth oxide-supported Ni-based catalysts with the potential reaction mechanism and corresponding reactor design would be promising for low-temperature Sabatier reaction.

3.
ChemSusChem ; : e202401514, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198215

RESUMO

Silicon dioxide (SiO2) from rice husk can be extracted and be used as support for Ni-based catalysts. The impregnation method (IM) is usually used for preparing Ni/SiO2 catalysts, but its catalytic activity in CO2 hydrogenation to CH4 remains unsatisfactory. In this work, we explored alternative preparation methods, using ammonia evaporation method (AEM) and hydrothermal method (HM) to prepare the catalysts. The results showed that the catalysts prepared by AEM and HM were significantly superior to that prepared by IM. Notably, the catalyst synthesized by AEM from sustainable silica exhibited the best performance, achieving 81.69 % CO2 conversion and over 99 % methane selectivity at low reaction temperature of 300 °C. The characterization techniques indicate that the Ni/SiO2-AEM catalyst can form nickel phyllosilicate with lamellar structure, leading to better Ni dispersion and higher specific surface area. Furthermore, the results of in-situ DRIFTS have revealed the potential catalytic mechanism over Ni/SiO2 catalysts, indicating that it involves pathways with both the CO* and HCOO* as the key intermediates.

4.
Heliyon ; 10(14): e34583, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130473

RESUMO

Background: Three-dimensional cephalometric analysis is crucial in craniomaxillofacial assessment, with landmarks detection in craniomaxillofacial (CMF) CT scans being a key component. However, creating robust deep learning models for this task typically requires extensive CMF CT datasets annotated by experienced medical professionals, a process that is time-consuming and labor-intensive. Conversely, acquiring large volume of unlabeled CMF CT data is relatively straightforward. Thus, semi-supervised learning (SSL), leveraging limited labeled data supplemented by sufficient unlabeled dataset, could be a viable solution to this challenge. Method: We developed an SSL model, named CephaloMatch, based on a strong-weak perturbation consistency framework. The proposed SSL model incorporates a head position rectification technique through coarse detection to enhance consistency between labeled and unlabeled datasets and a multilayers perturbation method which is employed to expand the perturbation space. The proposed SSL model was assessed using 362 CMF CT scans, divided into a training set (60 scans), a validation set (14 scans), and an unlabeled set (288 scans). Result: The proposed SSL model attained a detection error of 1.60 ± 0.87 mm, significantly surpassing the performance of conventional fully supervised learning model (1.94 ± 1.12 mm). Notably, the proposed SSL model achieved equivalent detection accuracy (1.91 ± 1.00 mm) with only half the labeled dataset, compared to the fully supervised learning model. Conclusions: The proposed SSL model demonstrated exceptional performance in landmarks detection using a limited labeled CMF CT dataset, significantly reducing the workload of medical professionals and enhances the accuracy of 3D cephalometric analysis.

5.
PeerJ ; 12: e17739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035168

RESUMO

Background: Scoliosis is a multifaceted three-dimensional deformity that significantly affects patients' balance function and walking process. While existing research primarily focuses on spatial and temporal parameters of walking and trunk/pelvic kinematics asymmetry, there remains controversy regarding the symmetry and regularity of bilateral lower limb gait. This study aims to investigate the symmetry and regularity of bilateral lower limb gait and examine the balance control strategy of the head during walking in patients with idiopathic scoliosis. Methods: The study involved 17 patients with idiopathic scoliosis of Lenke 1 and Lenke 5 classifications, along with 17 healthy subjects for comparison. Three-dimensional accelerometers were attached to the head and L5 spinous process of each participant, and three-dimensional motion acceleration signals were collected during a 10-meter walking test. Analysis of the collected acceleration signals involved calculating five variables related to the symmetry and regularity of walking: root mean square (RMS) of the acceleration signal, harmonic ratio (HR), step regularity, stride regularity, and gait symmetry. Results: Our analysis reveals that, during the walking process, the three-dimensional motion acceleration signals acquired from the lumbar region of patients diagnosed with idiopathic scoliosis exhibit noteworthy disparities in the RMS of the vertical axis (RMS-VT) and the HR of the vertical axis (HR-VT) when compared to the corresponding values in the healthy control (RMS-VT: 1.6 ± 0.41 vs. 3 ± 0.47, P < 0.05; HR-VT: 3 ± 0.72 vs. 3.9 ± 0.71, P < 0.05). Additionally, the motion acceleration signals of the head in three-dimensional space, including the RMS in the anterior-posterior and vertical axis, the HR-VT, and the values of step regularity in both anterior-posterior and vertical axis, as well as the values of stride regularity in all three axes, are all significantly lower than those in the healthy control group (P < 0.05). Conclusion: The findings of the analysis suggest that the application of three-dimensional accelerometer sensors proves efficacious and convenient for scrutinizing the symmetry and regularity of walking in individuals with idiopathic scoliosis. Distinctive irregularities in gait symmetry and regularity manifest in patients with idiopathic scoliosis, particularly within the antero-posterior and vertical direction. Moreover, the dynamic balance control strategy of the head in three-dimensional space among patients with idiopathic scoliosis exhibits a relatively conservative nature when compared to healthy individuals.


Assuntos
Acelerometria , Marcha , Escoliose , Caminhada , Humanos , Escoliose/fisiopatologia , Feminino , Acelerometria/instrumentação , Acelerometria/métodos , Caminhada/fisiologia , Adolescente , Masculino , Fenômenos Biomecânicos/fisiologia , Marcha/fisiologia , Dispositivos Eletrônicos Vestíveis , Criança , Estudos de Casos e Controles , Equilíbrio Postural/fisiologia , Adulto Jovem
6.
Inorg Chem ; 63(25): 11832-11841, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38847596

RESUMO

Highly ordered periodic macroporous structures have been extensively utilized to significantly enhance the photocatalytic activity. However, constructing 3D interconnected ordered porous ternary nanostructures with highly crystalline frameworks remains a formidable challenge. Here, we introduce the design and fabrication of 3D interconnected periodic macroporous NaNbO3 (PM NaNbO3) to effectively increase the density of surface-active sites and optimize the photogenerated carrier-transfer efficiency. By incorporating Pt as a cocatalyst, PM NaNbO3 exhibits an exceptional photocatalytic hydrogen generation rate of 10.04 mmol h-1 g-1, which is approximately six and five times higher than those of calcined NaNbO3 (C-NaNbO3) and hydrothermal NaNbO3 (H-NaNbO3), respectively. This outstanding performance can be attributed to the synergistic effects arising from its well-interconnected pore architecture, large surface area, enhanced light absorption capability, and improved charge carrier separation and transport efficiency. The findings presented in this study demonstrate an innovative approach toward designing hierarchically periodic macroporous materials for solar-driven hydrogen production.

7.
ACS Appl Mater Interfaces ; 16(14): 17442-17452, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551195

RESUMO

Engineering targeted and reliable charge transfer pathways in multiphase photocatalysts remains a challenge. Herein, we conceptualize the Cd@CdS-ZnO/reduced graphene oxide (rGO)/ZnS heterostructures coupled with reliable carrier migration channels and visible-light response antennas by building rGO-integrated electrochemical nanoreactors and an ion-exchange process. In this ternary catalyst, the Cd clusters and rGO perform as charge relays to boost carrier transport via the Z-scheme route and accelerate photogenerated carriers to react with surface-adsorbed substances. Meanwhile, thanks to CdS, the heterostructures have photocatalytic properties under visible light illumination and can also inhibit self-corrosion by shielding Cd clusters to avoid disrupting charge transfer channels. Therefore, the special heterostructure demonstrates fascinating photocatalytic hydrogen production activity without the intervention of cocatalysts. This work provides a feasible protocol for improving the interfaces between metals and semiconductors to achieve efficient photocatalytic hydrogen generation.

8.
Inorg Chem ; 63(9): 4312-4327, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354197

RESUMO

It is crucial to eliminate CO emissions using non-noble catalysts. Cu-based catalysts have been widely applied in CO oxidation, but their activity and stability at low temperatures are still challenging. This study reports the preparation and application of an efficient copper-doped ceria electrospun fiber catalyst prepared by a facile electrospinning method. The obtained 10Cu-Ce fiber catalyst achieved complete CO oxidation at a temperature as low as 90 °C. However, a reference 10Cu/Ce catalyst prepared by the impregnation method needed 110 °C to achieve complete CO oxidation under identical reaction conditions. Asymmetric oxygen vacancies (ASOV) at the interface between copper and cerium were constructed, to effectively absorb gas molecules involved in the reaction, leading to the enhanced oxidation of CO. The exceptional ability of the 10Cu-Ce catalyst to adsorb CO is attributed to its unique structure and surface interaction phase Cu+-Ov-Ce3+, as demonstrated by a series of characterizations and DFT calculations. This novel approach of using electrospinning offers a promising technique for developing low-temperature and non-noble metal-based catalysts.

9.
Small ; 20(25): e2310753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279635

RESUMO

The fabrication of periodic macroporous (PM) in Nb2O5 via morphological control is crucial for improving the photocatalytic hydrogen evolution efficiency. In this study, Nb2O5 with PM is synthesized using a straightforward colloidal crystal templating approach. This material features an open, interconnected macroporous architecture with nanoscale walls, high crystallinity, and substantial porosity. Extensive characterization reveals that this hierarchically structured Nb2O5 possesses abundant surface active sites and is capable of capturing light effectively, facilitating rapid mass transfer and diffusion of reactants and markedly suppressing the recombination of photoexcited charge carriers. Macroporous Nb2O5 exhibits superior water-splitting hydrogen evolution performance compared with its bulk and commercial counterparts, achieving a hydrogen production rate of 405 µmol g-1 h-1, surpassing that of bulk Nb2O5 (B-Nb2O5) and commercial Nb2O5 (C-Nb2O5) by factors of 5 and 33, respectively. This study proposes an innovative strategy for the design of hierarchically structured PM, thereby significantly advancing the hydrogen evolution potential of Nb2O5.

10.
Small ; 20(5): e2305888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37726232

RESUMO

Achieving water splitting to produce green H2 , using the noble-metal-free MoS2 , has attracted huge interest from researchers. However, tuning the number of MoS2 layers precisely while obtaining small lateral sizes to surge the H2 -evolution rate is a tremendous challenge. Here, a bottom-up strategy is designed for the in situ growth of ultrasmall lateral-sized MoS2 with tunable layers on CdS nanorods (CN) by controlling the decomposition temperature and concentration of substrate seed (NH4 )2 MoS4 . Here, the bilayer MoS2 and CN coupling (2L-MoS2 /CN) exhibits the optimum photocatalytic activity. Compared to thicker MoS2 , the 2L-MoS2 has sufficient reduction capacity to drive photocatalytic H2 evolution and the ultrasmall lateral size provides more active sites. Meanwhile, the indirect bandgap, in contrast to the direct bandgap of the monolayer MoS2 , suppresses the carrier recombination transferred to 2L-MoS2 . Under the synergistic effect of both, 2L-MoS2 /CN has fast surface chemical reactions, resulting in the photocatalytic H2 -evolution rate of up to 41.86 mmol g-1 h-1 . A novel strategy is provided here for tuning the MoS2 layers to achieve efficient H2 evolution.

11.
Angew Chem Int Ed Engl ; 63(3): e202317669, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38032335

RESUMO

Rational design of low-cost and efficient transition-metal catalysts for low-temperature CO2 activation is significant and poses great challenges. Herein, a strategy via regulating the local electron density of active sites is developed to boost CO2 methanation that normally requires >350 °C for commercial Ni catalysts. An optimal Ni/ZrO2 catalyst affords an excellent low-temperature performance hitherto, with a CO2 conversion of 84.0 %, CH4 selectivity of 98.6 % even at 230 °C and GHSV of 12,000 mL g-1 h-1 for 106 h, reflecting one of the best CO2 methanation performance to date on Ni-based catalysts. Combined a series of in situ spectroscopic characterization studies reveal that re-constructing monoclinic-ZrO2 supported Ni species with abundant oxygen vacancies can facilitate CO2 activation, owing to the enhanced local electron density of Ni induced by the strong metal-support interactions. These findings might be of great aid for construction of robust catalysts with an enhanced performance for CO2 emission abatement and beyond.

12.
BMC Oral Health ; 23(1): 876, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978486

RESUMO

BACKGROUND: Accurate cephalometric analysis plays a vital role in the diagnosis and subsequent surgical planning in orthognathic and orthodontics treatment. However, manual digitization of anatomical landmarks in computed tomography (CT) is subject to limitations such as low accuracy, poor repeatability and excessive time consumption. Furthermore, the detection of landmarks has more difficulties on individuals with dentomaxillofacial deformities than normal individuals. Therefore, this study aims to develop a deep learning model to automatically detect landmarks in CT images of patients with dentomaxillofacial deformities. METHODS: Craniomaxillofacial (CMF) CT data of 80 patients with dentomaxillofacial deformities were collected for model development. 77 anatomical landmarks digitized by experienced CMF surgeons in each CT image were set as the ground truth. 3D UX-Net, the cutting-edge medical image segmentation network, was adopted as the backbone of model architecture. Moreover, a new region division pattern for CMF structures was designed as a training strategy to optimize the utilization of computational resources and image resolution. To evaluate the performance of this model, several experiments were conducted to make comparison between the model and manual digitization approach. RESULTS: The training set and the validation set included 58 and 22 samples respectively. The developed model can accurately detect 77 landmarks on bone, soft tissue and teeth with a mean error of 1.81 ± 0.89 mm. Removal of region division before training significantly increased the error of prediction (2.34 ± 1.01 mm). In terms of manual digitization, the inter-observer and intra-observer variations were 1.27 ± 0.70 mm and 1.01 ± 0.74 mm respectively. In all divided regions except Teeth Region (TR), our model demonstrated equivalent performance to experienced CMF surgeons in landmarks detection (p > 0.05). CONCLUSIONS: The developed model demonstrated excellent performance in detecting craniomaxillofacial landmarks when considering manual digitization work of expertise as benchmark. It is also verified that the region division pattern designed in this study remarkably improved the detection accuracy.


Assuntos
Aprendizado Profundo , Humanos , Tomografia Computadorizada por Raios X/métodos , Radiografia , Cefalometria/métodos , Osso e Ossos , Processamento de Imagem Assistida por Computador/métodos
13.
Inorg Chem ; 62(32): 12822-12831, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37525121

RESUMO

Bismuth oxybromide (BiOBr) is a promising photocatalytic semiconductor material due to its unique hierarchical structure and band structure. However, its photocatalytic applications are restricted due to its narrow visible-light absorption range and poor photooxidation capability. In this study, BiOBr1-xIx-y with rich surface Br vacancies (BrVs-rich BiOBr1-xIx-y) was created via a facile indirect substitution strategy. Benefiting from the broadened visible-light response range and reduced recombination rate of photogenerated carriers, BiOBr1-xIx-y shows excellent visible-light photodegradation ability for high-concentration refractory contaminants, such as phenol, tetracycline, bisphenol A, rhodamine B, methyl orange, and even real wastewater. At the same time, the Br vacancies can regulate the band structure of BiOBr1-xIx-y and serve as trap states to promote charge separation, thus facilitating surface photoredox reactions. An in-depth investigation of the Br vacancy effect and photodegradation mechanism was conducted. This novel study revealed the significance of Br vacancies in enhancing the photocatalytic performance of BiOBr under visible light, providing a promising strategy for improving the utilization efficiency of sunlight in wastewater treatment.

14.
Inorg Chem ; 62(4): 1539-1548, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36642893

RESUMO

A proposed BiO(ClBr)(1-x)/2Ix-n solid solution containing abundant iodine vacancies has been constructed through a facile solvothermal treatment strategy. Fascinatingly, the iodine-vacancy BiO(ClBr)(1-x)/2Ix-n solid solution exhibits an outstanding visible-light photocatalytic degradation property for the environmentally hazardous pollutants of methyl orange, tetracycline, and phenol solutions, which is credited to the synergistic effect of iodine vacancies and the solid solution. By manipulating the molar ratios of Cl, Br, and I, the band structure of the solid solution attained is controlled, enabling the samples to maximize the harvest of visible light and to possess strong oxidation features. More importantly, the construction of iodine vacancies is bound to modulate the local surface atomic structure and promotes the efficiency of the separation of photogenerated carriers. Given these, the microstructure and physicochemical and photoelectrochemical properties of the photocatalysts are fully characterized in a series. In addition, the iodine-vacancy BiO(ClBr)(1-x)/2Ix-n solid solution has a stable crystal structure that permits favorable recyclability even after multiple cycles of degradation. This study sheds light on the significance of the simultaneous existence of vacancy and the solid solution for the enhanced performance of photocatalysts and opens up new insights for sustainable solar-chemical energy conversion.

15.
J Colloid Interface Sci ; 635: 128-137, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36584613

RESUMO

Solar-driven hydrogen evolution over ZnO-ZnS heterostructures is considered as a promising strategy for sustainable-energy issues. However, the industrialization of this strategy is still constrained by suppressed carrier migration, rapid charge recombination, and the inevitable utilization of noble-metal particles. Herein, we envision a novel strategy of successfully introducing In2O3 into the ZnO-ZnS heterostructure. Benefiting from the optimized internal electric field and the charge carrier migration mode based on the direct Z-scheme, the interfacial elaborating In2O3-decorated ZnO/reduced graphene oxide (rGO)/ZnS heterostructure manifests smooth charge migration, suppressed electron-hole pair recombination, and increased surface active sites. More importantly, the in situ introduction of In2O3 optimizes the construction of the internal electric field, favoring directional light-triggered carrier migration. As a result, the light-induced electrons generated from the heterostructure can be efficiently employed for the hydrogen evolution reaction. Hence, this work would shed light on the in situ fabrication of noble-metal-free photocatalysts for solar-driven water splitting.

16.
Bioengineering (Basel) ; 9(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421096

RESUMO

Huangjiu lees (HL) is a byproduct in Chinese Huangjiu production with various nutrient and biological functional components. Without efficient treatment, it could cause environmental issues and bioresource wasting. Existing dominant recovery approaches focus on large-scale disposal, but they ignore the application of high-value components. This study discusses the advantages and limitations of existing resourcing approaches, such as feed, food and biogas biological production, considering the efficiency and value of HL resourcing. The extraction of functional components as a suggestion for HL cascade utilization is pointed out. This study is expected to promote the application of HL resourcing.

17.
Dalton Trans ; 51(42): 16389-16396, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250669

RESUMO

Introducing piezoelectric materials with the built-in electric field caused by mechanical force has been confirmed as an effective strategy to boost the separation efficiency of photoexcited charge carriers that determines the photocatalytic performance. In this study, we introduced Bi4Ti3O12 with superior piezoelectric properties into BiVO4-Bi4V2O10 materials to synthesize a 2D Bi4Ti3O12-BiVO4-Bi4V2O10 photocatalyst via a facile hydrothermal method. Compared with bare BiVO4, the Bi4Ti3O12-BiVO4-Bi4V2O10 piezo-photocatalytic activity towards Cr(VI) removal and oxygen evolution is boosted remarkably under both illumination and ultrasound treatments. The promoted photocatalytic activity can be ascribed to the accelerated photoexcited carrier separation efficiency driven by the polarization electric field and the synergy effect in the heterostructure. This work provides a simple and sustainable strategy for the design and development of piezo-photocatalysts with high photoredox activity capacity.

18.
J Colloid Interface Sci ; 628(Pt A): 745-757, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961243

RESUMO

In our work, poly(3,4-ethylenedioxythiophene) (PEDOT) granules supported Cu/Ni-doped Pd electrocatalysts (PdCu/PEDOT and PdNi/PEDOT) were synthesized for ethylene glycol (EG) oxidation in alkaline medium. The amorphous PEDOT granules as the catalyst supports provide plenty of attachment sites for PdCu and PdNi nanoparticles. The optimized Pd1Cu3/PEDOT and Pd7Ni3/PEDOT catalysts both perform superior mass-based activity, area-based activity and intrinsic activity for EG oxidation as compared to other control samples. Moreover, chronoamperometry and long-term cyclic voltammetry tests demonstrate that the Pd1Cu3/PEDOT catalyst performs optimal anti-poisoning capability and catalytic durability. The outstanding electrocatalytic performance can be attributed to the favourable dispersion of Pd1Cu3 and Pd7Ni3 nanoparticles on the PEDOT granules and the synergistic effects between Pd, Cu/Ni atoms and the electron-rich conjugated structure of PEDOT. In summary, this work synthesized two Pd/PEDOT-based electrocatalysts with promising catalytic application prospect in direct ethylene glycol fuel cell (DEGFC), which may provide some theoretical support for the design and synthesis of competent electrocatalysts for DEGFC.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Compostos Bicíclicos Heterocíclicos com Pontes/química , Catálise , Etilenoglicóis , Polímeros/química
19.
Langmuir ; 38(24): 7558-7566, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35666859

RESUMO

Bismuth vanadate (BiVO4) is a promising photocatalyst for water pollution degradation and photocatalytic oxygen evolution. In this work, we prepared 2D/2D BiVO4-Bi4V2O10 heterostructure with tight interfacial contact via a facile one-step hydrothermal process. The crystal structure and morphology of the samples could be easily regulated by changing the pH values of the solution. The BiVO4-Bi4V2O10 heterostructure exhibited an enhanced photodegradation rate of Cr(VI) and oxygen evolution that of bare BiVO4, indicating that the synergistic effect and the interfacial fusions between BiVO4 and Bi4V2O10 can effectively promote the migration and separation rate of photoexcited charge carriers.

20.
Inorg Chem ; 61(22): 8540-8549, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603717

RESUMO

Photocatalytic technology has made a series of breakthroughs in environmental remediation, but the degradation performance of persistent heavy metal ions and organic pollutants is not particularly excellent. In addition, the layered structure of bismuth oxyhalides (BiOX, X = I, Br, and Cl) has been a popular material for photodegradation and photoelectrochemistry. Accordingly, with a view to construct a suitable band structure and control the surface structure, it is necessary to develop a strategy to synthesize a BiOCl1-xIn solid solution with halogen vacancies. In this study, halogen vacancies are in situ introduced into the BiOCl1-xIn solid solution through constructing chemical bonds between the hydroxyl groups in glycerol and the I ions during the growth process. The band of the halogen-vacancy BiOCl1-xIn solid solution is widened and active sites centered at halogen vacancies are formed in the direction favorable for the photocatalytic reaction, resulting in enhanced performance in the reduction of Cr(VI) and the oxidation of phenol. The results obtained can provide a new idea for the design of efficient photocatalysts by controlling the formation of halogen vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA