Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ocul Surf ; 34: 459-476, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39426677

RESUMO

Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 µm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.

2.
Ear Nose Throat J ; : 1455613241272494, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39412107

RESUMO

Hamartoma is a congenital benign lesion commonly found in the lungs, kidneys, colon, and other regions, but it is seldom seen in the oral cavity. Multiple hamartoma occurrences in the tongue are particularly rare. This article describes a 7-day-old female infant with multiple tongue tumors and a cleft palate, who had difficulty feeding and subsequently underwent tumor removal under general anesthesia. Nine months later, a cleft palate repair was performed. No genetic abnormalities were detected in the genetic testing. After the tumor removal, follow-ups were conducted every year to observe any recurrence of the tumors, the morphology and function of the tongue, and any systemic abnormalities. After 7 years of follow-up, there was no recurrence of the tumors, and the morphology and function of the tongue were normal, with no systemic diseases found. It is crucial to conduct multidisciplinary consultations for children diagnosed with multiple tongue hamartomas and to monitor their overall development while addressing oral lesions.

3.
Chem Commun (Camb) ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39479931

RESUMO

A MoO2-doped Li5.5PS4.5Cl1.5 solid electrolyte with ionic conductivity of 12 mS cm-1 and an electrochemical window of 4.3 V vs. Li/Li+ was prepared, which enables a LiNi0.8Co0.1Mn0.1O2-based full cell to deliver a specific capacity of 194 mA h g-1 at 0.1C and retain 80% capacity after 3500 cycles at 1C.

4.
Front Nutr ; 11: 1452374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39434897

RESUMO

Background: Metabolic syndrome (MetS), or syndrome X, is a collection of metabolic illnesses that affect the body's health, particularly insulin resistance and obesity. The prevalence of MetS is on the rise, particularly among younger individuals. Quercetin, a natural flavonoid found in many traditional Chinese medicines, can impact various pathways to disrupt the pathological advancement of MetS with few negative effects. The American Heart Association recently introduced a cardiovascular health assessment termed Life's Essential 8 (LE8), which might impact the treatment of MetS. Methods: Quercetin targets and their functions in MetS pathways were identified using a network pharmacology method and molecular docking techniques. The study examined quercetin's direct and indirect interactions with proteins linked to the pathogenic processes of MetS. Data were collected regarding the American Heart Association's LE8 cardiovascular health indicators, which include health behaviors (diet, physical activity, nicotine exposure, and sleep) and health factors (body mass index, non-high-density lipoprotein cholesterol, blood glucose, and blood pressure). The study assessed the connection between LE8 and the occurrence of MetS, taking into account dietary quercetin consumption as a variable of interest. Results: The negative correlation between MetS and LE8 indicates that individuals with higher LE8 scores are less likely to develop MetS. Individuals in the fully adjusted highest group (LE8 ≥ 80) demonstrated a 79% lower likelihood of developing MetS than those in the lowest group (OR = 0.21; 95% CI, 0.17-0.26, p < 0.0001). Network pharmacology and molecular docking results show that quercetin may exert its therapeutic effects by modulating various biological response processes, including those related to xenobiotic stimuli, bacterial molecules, lipopolysaccharides, and oxidative stimuli. These processes involve key pathways associated with diabetic complications, such as the AGE-RAGE signaling pathway, pathways related to diabetic complications, and pathways involved in lipids and atherosclerosis. Therefore, quercetin may reduce cardiovascular risk, improve glucose-lipid metabolism, and alleviate insulin resistance and other biological processes by influencing multiple aspects of the lipid profile, blood glucose, and insulin resistance, ultimately impacting the links between LE8 score and MetS. Conclusion: This study discovered that an optimal LE8 score is a marker of adopting a lifestyle of wellness and is connected with a reduced likelihood of developing MetS. Quercetin acts on core targets such as IL6, BCL2, TP53, IL1B, MAPK1, and CCL2, and then plays a therapeutic role in regulating lipid metabolism, anti-inflammation, immunomodulation, autophagy, etc., through the pathways of diabetic complications, lipids, atherosclerosis, etc., and has the characteristics of multi-targets, multi-pathways, and multi-functions in regulating interventions for MetS.

5.
Nat Commun ; 15(1): 7715, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231977

RESUMO

The Omicron subvariants of SARS-CoV-2, especially for BA.2.86 and JN.1, have rapidly spread across multiple countries, posing a significant threat in the ongoing COVID-19 pandemic. Distinguished by 34 additional mutations on the Spike (S) protein compared to its BA.2 predecessor, the implications of BA.2.86 and its evolved descendant, JN.1 with additional L455S mutation in receptor-binding domains (RBDs), are of paramount concern. In this work, we systematically examine the neutralization susceptibilities of SARS-CoV-2 Omicron subvariants and reveal the enhanced antibody evasion of BA.2.86 and JN.1. We also determine the cryo-EM structures of the trimeric S proteins from BA.2.86 and JN.1 in complex with the host receptor ACE2, respectively. The mutations within the RBDs of BA.2.86 and JN.1 induce a remodeling of the interaction network between the RBD and ACE2. The L455S mutation of JN.1 further induces a notable shift of the RBD-ACE2 interface, suggesting the notably reduced binding affinity of JN.1 than BA.2.86. An analysis of the broadly neutralizing antibodies possessing core neutralizing epitopes reveals the antibody evasion mechanism underlying the evolution of Omicron BA.2.86 subvariant. In general, we construct a landscape of evolution in virus-receptor of the circulating Omicron subvariants.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Microscopia Crioeletrônica , Evasão da Resposta Imune , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , COVID-19/imunologia , COVID-19/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Evolução Molecular , Ligação Proteica , Modelos Moleculares
6.
Cell Genom ; 4(10): 100655, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39303708

RESUMO

The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical "cold-start" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.


Assuntos
Transcriptoma , Humanos , Tanquirases/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/genética , Descoberta de Drogas/métodos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Perfilação da Expressão Gênica/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
7.
Front Endocrinol (Lausanne) ; 15: 1414509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211452

RESUMO

Objective: The aim of this study was to evaluate the effectiveness of burosumab therapy in children with X-Linked Hypophosphatemia (XLH). Materials and methods: We systematically reviewed literature from PubMed, Web of Science, The Cochrane Library, and Embase up until January 2024, using EndNote Web for study organization. The Newcastle-Ottawa scale guided quality assessment, while Revman software was used for data analysis and visualization. Study selection, quality evaluation, and data aggregation were independently performed by three researchers. Results: The meta-analysis encompassed ten studies, including eight cohort studies that examined burosumab's impact pre- and post-administration, and two randomized controlled trials comparing burosumab to standard therapy. The evidence from this review suggests burosumab's superiority in managing XLH in pediatric populations, particularly in improving key biochemical markers including 1,25-dihydroxyvitamin D (1,25-(OH)2D), phosphorus, and alkaline phosphatase (ALP), alongside improvements in the renal tubular maximum reabsorption rate of phosphate to glomerular filtration rate (TmP/GFR), and significant skeletal improvements as indicated by the rickets severity score (RSS) and the 6-minute walk test (6MWT). However, the long-term safety and effects, including height and quality of life (QOL) data, remains to be elucidated. Conclusions: Burosumab has shown significant therapeutic effectiveness in treating children with XLH, highlighting its potential as a key treatment option.


Assuntos
Anticorpos Monoclonais Humanizados , Raquitismo Hipofosfatêmico Familiar , Humanos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Criança , Anticorpos Monoclonais Humanizados/uso terapêutico , Resultado do Tratamento
8.
Exp Eye Res ; 247: 110052, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151778

RESUMO

This research focused on how upregulation of S100A9 contributed to the pathogenesis of the dry eye disease (DED) and whether S100A9 served as a promising therapeutic target in DED. Public single-cell RNA sequencing (scRNA-seq) data of a lacrimal gland excision (LGE) murine DED model was analyzed. LGE model was established and expression of protein was measured through immunofluorescence and Western blot. DED-related signs were evaluated through tear secretion and fluorescent staining. TUNEL was performed to detect the level of cell death. Briefly, S100A9 was recognized as a highly variable gene in the DED group. LGE model was successfully established, and S100A9 showed a time-dependent increase in the corneal epithelia. Autophagic blockage was predicted by the scRNA-seq data in DED, and further verified by decrease of LC3B-II/LC3B-I and increase of SQSTM1 and p-mTOR/mTOR, while S100A9 inhibitor paquinimod (PAQ) reversed the changes. PAQ also downregulated TLR4, and inhibition of TLR4 also alleviated autophagic blockage in DED. Finally, signs of DED, chronic corneal inflammation and cell death got a remission after either inhibition of S100A9 or TLR4. In general, we deduced a S100A9-TLR4-Autophagic blockage pathway in the pathogenesis of DED.


Assuntos
Autofagia , Western Blotting , Calgranulina B , Modelos Animais de Doenças , Síndromes do Olho Seco , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like , Animais , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Autofagia/fisiologia , Camundongos , Calgranulina B/metabolismo , Calgranulina B/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/patologia , Lágrimas/metabolismo , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Feminino , Regulação da Expressão Gênica
9.
Anal Bioanal Chem ; 416(26): 5779-5789, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39212695

RESUMO

Listeria monocytogenes (L. monocytogenes) is a prevalent food-borne pathogen that can cause listeriosis, which manifests as meningitis and other symptoms, potentially leading to fatal outcomes in severe cases. In this study, we developed an aptasensor utilizing carboxylated magnetic beads and Cas12a to detect L. monocytogenes. In the absence of L. monocytogenes, the aptamer maintains its spatial configuration, keeping the double-stranded DNA attached and preventing the release of a startup template and activation of Cas12a's trans-cleavage capability. Conversely, in the presence of L. monocytogenes, the aptamer undergoes a conformational change, releasing the double-stranded DNA to serve as a startup template, thereby activating the trans-cleavage capability of Cas12a. Consequently, as the concentration of L. monocytogenes increases, the observable brightness in a blue light gel cutter intensifies, leading to a rise in fluorescence intensity difference compared to the control. This Cas12a aptasensor demonstrates excellent sensitivity towards L. monocytogenes, with a lowest detection limit (LOD) of 57.15 CFU/mL and a linear range of 4×102 to 4×107 CFU/mL (R2=0.9858). Notably, the proposed Cas12a aptasensor exhibited outstanding selectivity and recovery in beef samples, and could be employed for precise monitoring. This Cas12a aptasensor not only provides a novel fluorescent and visual rapid detection method for L. monocytogenes but also offers simplicity, speed, and stability compared to previous detection methods. Furthermore, it is suitable for on-site detection of beef samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Limite de Detecção , Listeria monocytogenes , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/genética , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Microbiologia de Alimentos/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Fluorescência , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/química , Endodesoxirribonucleases/química , Espectrometria de Fluorescência/métodos
10.
Folia Neuropathol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39165217

RESUMO

INTRODUCTION: The morbidity and mortality of spinal cord injury (SCI) are increasing year by year. It is of vital importance to ascertain the mechanism of SCI. Phosphoglycerate mutase family member 5 (PGAM5) is viewed as a molecular marker of SCI, but its specific role in SCI is elusive. MATERIAL AND METHODS: Following establishment of the SCI mouse model, the pathological examination of the spinal cord was initially assessed using H&E staining. PGAM5 expression in spinal cord tissues was appraised utilizing immunohistochemistry and RT-qPCR. Subsequently, after the expression of PGAM5 in SCI mice was inhibited by adenovirus transfection, the degree of SCI was determined, and the motor ability of hind limbs was estimated with the BBB score. In addition, the apoptosis of neurons, microglia activation and the generation of inflammatory cytokines in the spinal cord of mice were detected. Next, at the cellular level, PGAM5 expression was inhibited in the BV2 microglial cells induced by lipopolysaccharide (LPS), so as to explore the effects of down-regulation of PGAM5 on the activation, inflammation and apoptosis of neurons. Finally, western blot was applied for the appraisement of apoptosis signal-regulating kinase-1 (ASK-1)/p38/nuclear factor-kappa B (NF-kB) signaling-associated proteins. RESULTS: PGAM5 expression in SCI mice was found to be raised. Inhibition of PGAM5 expression in SCI mice can significantly reduce spinal cord pathological injury, SCI-induced neuronal apoptosis, microglial cell activation and inflammation. The above regulatory process might be realized through the ASK-1/p38/NF-kB signaling pathway mediated by PGAM5. CONCLUSIONS: Down-regulation of PGAM5 attenuated SCI-induced neuronal injury by inhibiting ASK-1/p38/NF-kB signaling.

11.
PLoS Negl Trop Dis ; 18(8): e0012428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159234

RESUMO

BACKGROUND: Schistosomiasis is a relatively neglected parasitic disease that afflicts more than 250 million people worldwide, for which the control strategy relies mainly on mass treatment with the only available drug, praziquantel (PZQ). This approach is not sustainable and is a priority for developing novel drug candidates for the treatment and control of schistosomiasis. METHODOLOGYS/PRINCIPAL FINDINGS: In our previous study, we found that DW-3-15, a kind of PZQ derivative, could significantly downregulate the expression of the histone acetyltransferase of Schistosoma japonicum (SjHAT). In this study, several commercially available HAT inhibitors, A485, C646 and curcumin were screened in vitro to verify their antischistosomal activities against S. japonicum juveniles and adults. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of HAT inhibitors in vitro. Quantitative real-time PCR was employed to detect the mRNA level of SjHAT after treatment with different HAT inhibitors. Our results demonstrated that curcumin was the most effective inhibitor against both juveniles and adults of S. japonicum, and its schistosomicidal effects were time- and dose dependent. However, A485 and C646 had limited antischistosomal activity. Scanning electron microscopy demonstrated that in comparison with DW-3-15, curcumin caused similar tegumental changes in male adult worms. Furthermore, both curcumin and DW-3-15 significantly decreased the SjHAT mRNA level, and curcumin dose-dependently reduced the SjHAT expression level in female, male and juvenile worms. CONCLUSIONS: Among the three commercially available HATs, curcumin was the most potent against schistosomes. Both curcumin and our patent compound DW-3-15 markedly downregulated the expression of SjHAT, indicating that SjHAT may be a potential therapeutic target for developing novel antischistosomal drug candidates.


Assuntos
Curcumina , Histona Acetiltransferases , Schistosoma japonicum , Animais , Schistosoma japonicum/efeitos dos fármacos , Curcumina/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Feminino , Masculino , Inibidores Enzimáticos/farmacologia , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Camundongos , Esquistossomicidas/farmacologia
12.
Chem Sci ; 15(27): 10600-10611, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994403

RESUMO

Extracting knowledge from complex and diverse chemical texts is a pivotal task for both experimental and computational chemists. The task is still considered to be extremely challenging due to the complexity of the chemical language and scientific literature. This study explored the power of fine-tuned large language models (LLMs) on five intricate chemical text mining tasks: compound entity recognition, reaction role labelling, metal-organic framework (MOF) synthesis information extraction, nuclear magnetic resonance spectroscopy (NMR) data extraction, and the conversion of reaction paragraphs to action sequences. The fine-tuned LLMs demonstrated impressive performance, significantly reducing the need for repetitive and extensive prompt engineering experiments. For comparison, we guided ChatGPT (GPT-3.5-turbo) and GPT-4 with prompt engineering and fine-tuned GPT-3.5-turbo as well as other open-source LLMs such as Mistral, Llama3, Llama2, T5, and BART. The results showed that the fine-tuned ChatGPT models excelled in all tasks. They achieved exact accuracy levels ranging from 69% to 95% on these tasks with minimal annotated data. They even outperformed those task-adaptive pre-training and fine-tuning models that were based on a significantly larger amount of in-domain data. Notably, fine-tuned Mistral and Llama3 show competitive abilities. Given their versatility, robustness, and low-code capability, leveraging fine-tuned LLMs as flexible and effective toolkits for automated data acquisition could revolutionize chemical knowledge extraction.

13.
Front Vet Sci ; 11: 1418165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966561

RESUMO

To compare the impact of nanoselenium and sodium selenite on the performance, blood indices, and milk metabolites of dairy cows during the peak lactation period, two groups of dairy cows under the same conditions were selected as the control group (CON group) and treatment group (NSe group) for a 38-day (10 days for adaptation and 28 days for sampling) experiment. The control group (CON) was provided a basal diet +3.3 g/d of sodium selenite (purity1%), whereas the nanoselenium group (NSe) was offered the same diet +10 mL/d of nanoselenium (selenium concentration 1,500 mg/L). The results showed that NSe significantly increased the milk yield, milk selenium content, and feed efficiency (p < 0.05), but had no significant effect on other milk components (p > 0.05). NSe significantly increased blood urea nitrogen (BUN) and alkaline phosphatase (ALP) (p < 0.05), but had no significant effects on malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), blood total antioxidant capacity (T-AOC), or blood selenium (p > 0.05). In addition, the nontargeted metabolomics of the milk was determined by LC-MS technology, and the differentially abundant metabolites and their enrichment pathways were screened. According to these findings, NSe considerably increased the contents of cetylmannoside, undecylenoic acid, 3-hydroxypentadecanoic acid, 16-hydroxypentadecanoic acid, threonic acid, etc., but decreased the contents of galactaric acid, mesaconic acid, CDP-glucose etc. Furthermore, the enriched metabolic pathways that were screened with an impact value greater than 0.1 included metabolism of niacin and niacinamide, pyruvate, citrate cycle, riboflavin, glycerophospholipid, butanoate and tyrosine. Pearson correlation analysis also revealed a relationship between different milk metabolites and blood selenium, as well as between milk selenium and blood biochemical indices. In conclusion, compared with sodium selenite, nanoselenium improves the milk yield, feed efficiency, and milk selenium content of dairy cows and regulates milk metabolites and related metabolic pathways in Holstein dairy cows during the peak lactation period, which has certain application prospects in dairy production.

14.
Micromachines (Basel) ; 15(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39064359

RESUMO

Metal additive manufacturing technology has developed by leaps and bounds in recent years; selective laser melting technology is a major form in metal additive manufacturing, and its application scenarios are numerous. For example, it is involved in many fields including aerospace field, automotive, mechanical processing, and the nuclear industry. At the same time, it also indirectly provides more raw materials for all walks of life in our country. However, during the selective laser melting process, due to the action of high-energy-density lasers, the temperature of most metal powders can reach above the vaporization temperature. Light metals with relatively low vaporization temperatures such as magnesium and zinc have more significant vaporization and other behaviors. At the same time, during the metal vaporization process, a variety of by-products are generated, which seriously affect the forming quality and mechanical properties of the workpiece, resulting in the workpiece quality possibly not reaching the expected target. This paper mainly interprets the metal vaporization behavior in the LPBF process and summarizes the international research progress and suppression methods for vaporization.

15.
BMC Cardiovasc Disord ; 24(1): 323, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918713

RESUMO

BACKGROUND: Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS: 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS: The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION: In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.


Assuntos
Apoptose , Autofagia , Dexmedetomidina , Miócitos Cardíacos , Lesões Experimentais por Radiação , Animais , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Dexmedetomidina/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Reguladoras de Apoptose/metabolismo
16.
Front Microbiol ; 15: 1358085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716171

RESUMO

The objective of this experiment was to investigate the effects of Lactobacillus plantarum and molasses on the nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora of alfalfa silage in sandy grasslands. The experimental treatments included control (CK), 106 CFU/g Lactobacillus plantarum (L), 5% molasses (M), and 106 CFU/g Lactobacillus plantarum + 5% molasses (LM). The nutrient composition, fermentation quality, bacterial count, aerobic stability, and microflora were determined after 14 days and 56 days of ensiling, respectively. The results showed that the addition of L, M, and LM reduced dry matter loss (DM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and increased water-soluble carbohydrates (WSC) and ether extract (EE) content, compared to the CK group. Meanwhile, more lactic acid (LA) and accelerated fermentation were observed, causing the pH value to drop below 4.5 in the L, M, and LM groups after 56 days of ensiling. The addition of L, M, and LM promoted lactic acid bacteria (LAB), and inhibited yeast. The addition of L significantly increased the content of acetic acid (AA). In terms of microflora, the addition of L, M, and LM made Firmicutes become the dominant bacterial phylum earlier, while Lactobacillus, Weissella, and Pediococcus had a higher abundance. According to the result of Pearson's correlation, there is a very significant negative correlation between pH value and Lactobacillus (P < 0.01) and a very significant positive correlation between pH value and Lactococcus, Enterobacter, Enterococcus, and Leuconostoc (P < 0.01), which may be inhibited by Lactobacillus under the decreased pH value. The results of the prediction of microbial genes indicated that the addition of M could enhance the carbohydrate metabolism and membrane transport metabolism, which may contribute to LA production by LAB metabolism. In general, L, M and LM all improved the fermentation quality and reduced the loss of nutrients to varying degrees, but considering the fermentation quality, the overall effects of M and LM were better than L. M and LM are recommended to be used as silage additives in the process of alfalfa silage in sandy grasslands to improve the quality.

17.
J Hazard Mater ; 474: 134756, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820747

RESUMO

The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of gender­specific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCß4 was identified as a critical protein, which might be related to the gender­specific cognitive deficits in male rats. The up-regulated PLCß4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aß deposition in the hippocampus. These findings highlight that PLCß4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cádmio , Disfunção Cognitiva , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hipocampo , Lactação , Fosfolipase C gama , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Animais , Feminino , Masculino , Gravidez , Cádmio/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Fosfolipase C beta/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 4,5-Difosfato/metabolismo , Exposição Materna , Ratos
18.
Front Vet Sci ; 11: 1366314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577544

RESUMO

The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).

19.
Antioxidants (Basel) ; 13(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38671941

RESUMO

Fetal and neonatal exposures to perinatal oxidative stress (OS) are key mediators of bronchopulmonary dysplasia (BPD). To characterize these exposures, adductomics is an exposure science approach that captures electrophilic addition products (adducts) in blood protein. Adducts are bound to the nucleophilic cysteine loci of human serum albumin (HSA), which has a prolonged half-life. We conducted targeted and untargeted adductomics to test the hypothesis that adducts of OS vary with BPD. We studied 205 preterm infants (≤28 weeks) and 51 full-term infants from an ongoing birth cohort. Infant plasma was collected at birth (cord blood), 1-week, 1-month, and 36-weeks postmenstrual age. HSA was isolated from plasma, trypsin digested, and analyzed using high-performance liquid chromatography-mass spectrometry to quantify previously annotated (known) and unknown adducts. We identified 105 adducts in cord and postnatal blood. A total of 51 known adducts (small thiols, direct oxidation products, and reactive aldehydes) were increased with BPD. Postnatally, serial concentrations of several known OS adducts correlated directly with supplemental oxygen exposure. The application of large-scale adductomics elucidated OS-mediated pathways of BPD. This is the first study to investigate the "neonatal-perinatal exposome" and to identify oxidative stress-related exposure biomarkers that may inform antioxidant strategies to protect the health of future generations of infants.

20.
J Environ Manage ; 358: 120936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652989

RESUMO

Manure replacing synthetic fertilizer is a viable practice to ensure crop yield and increase soil organic carbon (SOC), but its impact on greenhouse gas (GHG) emissions is inconsistent, thus remains its effect on CF unclear. In this study, a 7-year field experiment was conducted to assess the impact of replacing synthetic fertilizer with manure on crop productivity, SOC sequestration, GHG emissions and crop CF under winter wheat-summer maize cropping system. Five treatments were involved: synthetic nitrogen, phosphorus, and potassium fertilizer (NPK) and 25%, 50%, 75%, and 100% of manure replacing synthetic N (25%M, 50%M, 75%M, and 100%M). Compared with NPK treatment, 25%M and 50%M treatments maintained annual yield (winter wheat plus summer maize) and sustainable yield index (SYI), but 75%M and 100%M treatments significantly decreased annual yield, and 100%M treatment also significantly reduced annual SYI. The SOC content exhibited a significant increasing trend over years in all treatments. After 7 years, SOC storage in manure treatments increased by 3.06-11.82 Mg ha-1 relative to NPK treatment. Manure treatments reduced annual GHG emissions by 14%-60% over NPK treatment. The CF of the cropping system ranged from 0.16 to 0.39 kg CO2 eq kg-1 of grain without considering SOC sequestration, in which the CF of manure treatments lowered by 18%-58% relative to NPK treatment. When SOC sequestration was involved in, the CF varied from -0.39 to 0.37 kg CO2 eq kg-1 of grain, manure treatments significantly reduced the CF by 22%-208% over NPK treatment. It was concluded that replacing 50% of synthetic fertilizer with manure was a sound option for achieving high crop yield and SYI but low CF under the tested cropping system.


Assuntos
Pegada de Carbono , Fertilizantes , Esterco , Solo , Triticum , Zea mays , Zea mays/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Solo/química , Carbono , Estações do Ano , Nitrogênio , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Gases de Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA