Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1012553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420029

RESUMO

Arnebiae Radix (dried root of Arnebia euchroma (Royle) Johnst.) is a traditional Chinese medicine (TCM) used to treat macular eruptions, measles, sore throat, carbuncles, burns, skin ulcers, and inflammations. The Arnebiae Radix extract can exert anti-breast cancer effects through various mechanisms of action. This study aimed to rapidly screen potential estrogen receptor (estrogen receptor α and estrogen receptor ß) ligands from the Arnebiae Radix extract. In this study, an analytical method based on affinity ultrafiltration coupled with UHPLC-Q-Exactive Orbitrap mass spectrometry was established for rapidly screening and identifying estrogen receptor ligands. Then, bindings of the components to the active site of estrogen receptor (estrogen receptor α and estrogen receptor ß) were investigated via molecular docking. Moreover, surface plasmon resonance (SPR) experiments with six compounds were performed to verify the affinity. As a result, a total of 21 ligands were screened from Arnebiae Radix using affinity ultrafiltration. Among them, 14 and 10 compounds from Arnebiae Radix showed affinity with estrogen receptor α and estrogen receptor ß, respectively. All of those ligands could have a good affinity for the multiple amino acid residues of the estrogen receptor based on molecular docking. In addition, six compounds display the great affinity by SPR. The method established in the study could be used to rapidly screen estrogen receptor ligands in Traditional Chinese medicine. The results demonstrated that the affinity ultrafiltration-UHPLC-Q-Exactive Orbitrap mass spectrometry method not only aids in the interpretation of the potential bioactive components and possible mechanisms of action of Arnebiae Radix but also provides a further effective basis for the quality control of this valuable herb medicine.

2.
Phys Chem Chem Phys ; 12(47): 15448-58, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20967362

RESUMO

By mimicking the molecular structure of 4,4'-bis(N-carbazolyl)-2,2'-biphenyl (CBP), which is a widely used host material, a new series of host molecules (carbazole-endcapped heterofluorenes, CzHFs) were designed by linking the hole-transporting carbazole to the core heterofluorene molecules in either meta or para positions of the heterofluorene. The aromatic cores considered in this study are biphenyl, fluorene, silafluorenes, germafluorenes, carbazole, phosphafluorene, oxygafluorene, and sulfurafluorene. To reveal their molecular structures, optoelectronic properties and structure-property relationships of the proposed host materials, an in-depth theoretical investigation was elaborated via quantum chemical calculations. The electronic structures in the ground states, cationic and anionic states, and lowest triplet states of these designed molecules have been studied with emphasis on the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), energy gaps (E(g)), triplet energy gaps ((3)E(g)), as well as some other electronic properties including ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ), triplet exciton generation fraction (χ(T)), spin density distributions (SD), and absorption spectra. These photoelectronic properties can be tuned by chemical modifications of the heteroatom and the carbazole substitution at different positions. This study provides theoretical insights into the nature of host molecules, and shows that the designed CzHFs can meet the requirements of the host materials for triplet emitters.

3.
J Phys Chem A ; 114(10): 3655-67, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20148545

RESUMO

Phosphafluorenes have drawn increasing attention recently in the applications of organic electronic devices due to their particular optoelectronic properties. To reveal their molecular structures, optoelectronic properties, and structure-property relationships of the newly emerged functional materials, an in-depth theoretical investigation was elaborated via quantum chemical calculations. The optimized geometric and electronic structures in both ground and exited states, the mobility of the hole and electron, the absorption and emission spectra, and the singlet exciton generation fraction of these novel phosphors-containing materials have been studied by density functional theory (DFT), single excitation configuration interaction (CIS), time-dependent density functional theory (TDDFT) methods, and the polarizable continuum model (PCM). The results show that the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), triplet energies ((3)E(g)), energy gaps (E(g)), as well as some other electronic properties including ionization potentials (IPs), electron affinities (EAs), reorganization energies (lambda), the singlet exciton generation fraction, radiative lifetime, and absorption and emission spectra can be easily tuned by chemical modifications of the phosphorus atom via methyl, phenyl, oxygen, sulfur, or selenium substitution, indicating that the phosphafluorenes are interesting optoelectronic functional materials, which have great potential in the applications of OLEDs, organic solar cells, organic storage, and sensors.

4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 21(2): 168-70, 2004 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-15079803

RESUMO

OBJECTIVE: To explore the prevalence and the clinical characteristics of mitochondrial gene mutation A3243G (mt tRNA(Leu(UUR)) 3243 A-->G) in patients with type 2 diabetes mellitus (DM2) in China. METHODS: Four hundred and twenty-eight cases of DM2 patients were selected randomly. One hundred and eighty-eight individuals were healthy controls. The mutation was assayed by PCR-restriction fragment length polymorphism technique. The target fragments of PCR were digested with restriction endonuclease Apa I. RESULTS: mt tRNA(Leu(UUR)) 3243A-->G gene mutation was found in 2 of 428 patients with DM2, but not found in the controls. Further investigation of the relatives of the 2 patients' families revealed that 3 members were the carriers of mt tRNA A3243G gene mutation and the patients with diabetes. In addition, one proband and her son were characterized with the syndrome of mitochondrial encephalomyopathy with lactic acidosis. The diabetes of these patients is frequently accompanied by hearing impairment or deafness with maternal inheritance. CONCLUSION: The prevalence of the mitochondrial gene A3243G mutation is 0.47% in DM2 patients in China. The data acquired in this study suggest that the clinical phenotype of these patients with A3243G should be heterogeneous.


Assuntos
DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Mutação , Aminoacil-RNA de Transferência/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA