Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Adv Mater ; : e2403039, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805574

RESUMO

The resistance of adhesives to organic solvents is of paramount importance in diverse industries. Unfortunately, many currently available adhesives exhibit either weak intermolecular chain interactions, resulting in insufficient resistance to organic solvents, or possess a permanent covalent crosslinked network, impeding recyclability. This study introduces an innovative approach to address this challenge by formulating zwitterionic poly(ionic liquid) (ZPIL) derivatives with robust dipole-dipole interactions, incorporating sulfonic anions and imidazolium cations. Due to its unique dynamic and electrostatic self-crosslinking structure, the ZPIL exhibits significant adhesion to various substrates and demonstrates excellent recyclability even after multiple adhesion tests. Significantly, ZPIL exhibits exceptional adhesion stability across diverse nonpolar and polar organic solvents, including ionic liquids, distinguishing itself from nonionic polymers and conventional poly(ionic liquid)s. Its adhesive performance remains minimally affected even after prolonged exposure to soaking conditions. The study presents a promising solution for the design of highly organic solvent-resistant materials for plastics, coatings, and adhesives.

2.
Mater Horiz ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814016

RESUMO

Smart windows always respond to single stimuli, which cannot satisfy various needs in practical applications. Smart windows that integrate thermotropic, electrochromic and power-generating functions in one device is highly challenging yet important in satisfying on-demand light modulation and energy efficiency in practical applications. Herein, a thermoresponsive lower critical solution temperature (LCST) ion gel was fabricated via a facile in situ polymerization of butyl acrylate in a conventional ionic liquid to explore "all in one" smart windows. The ion gel-assembled smart windows are thermotropic and electrochromic with a reliable adjustment of light transparency as well as power-generating, enabled by the ionic Soret effect of ionic liquids. Additionally, the ion gels demonstrated self-defensive robust mechanical properties, thermal insulating and antifogging properties. With such an interdisciplinary and comprehensive study of the ion gels, the LCST ion gels could fulfil the requirements of genius windows with high energy-saving potential and exceptional climate adaptability, such as shut-down of light transmission in summer, daily solar energy collection, and colour changes on demand. It conceptually updates smart windows from an energy saving to an energy supplier in buildings. It is the first time to explore the "all in one" smart windows based on integrated multifunctional ionic liquids, which could greatly bridge the gap between the materials and buildings to accelerate practical applications of smart windows.

3.
Nat Commun ; 15(1): 4265, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769305

RESUMO

The advancement of contemporary adhesives is often limited by the balancing act between cohesion and interfacial adhesion strength. This study explores an approach to overcome this trade-off by utilizing the spontaneous polymerization of a protic ionic liquid-based monomer obtained through the neutralization of 2-acrylamide-2-methyl propane sulfonic acid and hydroxylamine. The initiator-free polymerization process is carried out through a gradual increase in monomer concentration in aqueous solutions caused by solvent evaporation upon heating, which results in the in-situ formation of a tough and thin adhesive layer with a highly entangled polymeric network and an intimate interface contact between the adhesive and substrate. The abundance of internal and external non-covalent interactions also contributes to both cohesion and interfacial adhesion. Consequently, the produced protic poly(ionic liquid)s exhibit considerable adhesion strength on a variety of substrates. This method also allows for the creation of advanced adhesive composites with electrical conductivity or visualized sensing functionality by incorporating commercially available fillers into the ionic liquid adhesive. This study provides a strategy for creating high-performance ionic liquid-based adhesives and highlights the importance of in-situ polymerization for constructing adhesive composites.

4.
Macromol Rapid Commun ; : e2300736, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697133

RESUMO

Electrochromic devices built with ionogel electrolytes are seen as a pivotal step toward the future of quasi-solid electrochromic devices, due to their striking properties like exceptional safety and high ionic conductivity. Yet, the poor mechanical strength of electrolyte of these devices remains a constraint that hampers their advancement. As a resolution, this research explores the use of a robust, transparent ionogel electrolyte, which is designed using an in situ microphase separation strategy. The ionogels are highly transparent and robust and exhibit excellent physicochemical stability, including a wide electrochemical window and high temperature tolerance. Benefitting from these properties, a high-performance electrochromic device is fabricated through in situ polymerization with the ionogels, PPRODOT as the electrochromic layer, and PEDOT: PSS as the ion storage layer, achieving high transmittance contrast (43.1%), fast response (1/1.7 s), high coloring efficiency (1296.4 cm2 C-1), and excellent cycling endurance (>99.9% retention after 2000 cycles). In addition, using ITO-poly(ethylene terephthalate) as flexible substrates, a deformable electrochromic device displaying high stability is realized, highlighting the potential use in functional wearables.

5.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682249

RESUMO

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

6.
Adv Sci (Weinh) ; 11(22): e2310231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554395

RESUMO

In this study, Co/Ni-NC catalyst with hetero-diatomic Co/Ni active sites dispersed on nitrogen-doped carbon matrix is synthesized via the controlled pyrolysis of ZIF-8 containing Co2+ and Ni2+ compounds. Experimental characterizations and theoretical calculations reveal that Co and Ni are atomically and uniformly dispersed in pairs of CoN4-NiN4 with an intersite distance ≈0.41 nm, and there is long-range d-d coupling between Co and Ni with more electron delocalization for higher bifunctional activity. Besides, the in situ grown carbon nanotubes at the edges of the catalyst particles allow high electronic conductivity for electrocatalysis process. Electrochemical evaluations demonstrate the superior ORR and OER bifunctionality of Co/Ni-NC catalyst with a narrow potential gap of only 0.691 V and long-term durability, significantly prevailing over the single-atom Co-NC and Ni-NC catalysts and the benchmark Pt/C and RuO2 catalysts. Co/Ni-NC catalyzed Zn-air batteries achieve a high specific capacity of 771 mAh g-1 and a long continuous operation period up to 340 h with a small voltage gap of ≈0.65 V, also much superior to Pt/C-RuO2.

7.
Small ; : e2310884, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376170

RESUMO

Exploring covalent triazine frameworks (CTFs) with high capacitative activity is highly desirable and challenging. Herein, the S-rich CTFs cathode is pioneeringly introduced in Zn-ion hybrid supercapacitors (ZSC), achieving outstanding capacity and energy density, and satisfactory anti-freezing flexibility. Specifically, the S-bridged CTFs are synthesized by a bifunctional template-catalytic strategy, where ZnCl2 serves as both the catalyst/solvent and in situ template to construct triazine frameworks with interconnected pores and layered gaps. The resultant CTFs (CTFS-750) are employed as a reasonable pattern-like system to more deeply scrutinize the synergistic effect of S-bridged triazine and layered porous architecture for polymer-based cathodes in Zn-ion storage. The experimental results indicate that the adsorption barriers of Zn-ions on CTFS-750 are effectively weakened, and accessible Zn2+ -absorption sites provided by the C─S─C and C═N bonds have been confirmed via DFT calculations. Consequently, the CTFS-750 cathode-assembled ZSC displays an ultra-high capacity of 211.6 mAh g-1 at 1.0 A g-1 , an outstanding energy density of 202.7 Wh kg-1 , and attractive cycling performance. Moreover, the resulting flexible ZSC device shows superior capacity, good adaptability, and satisfactory anti-freezing behavior. This approach sheds new light on constructing advanced polymer-based cathodes at the atom level and paves the way for fabricating high-performance ZSC and beyond.

8.
Small ; 20(1): e2304541, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661573

RESUMO

The current development of single electrocatalyst with multifunctional applications in overall water splitting (OWS) and zinc-air batteries (ZABs) is crucial for sustainable energy conversion and storage systems. However, exploring new and efficient low-cost trifunctional electrocatalysts is still a significant challenge. Herein, the antiperovskite CuNCo3 prototype, that is proved to be highly efficient in oxygen evolution reaction but severe hydrogen evolution reaction (HER) performance, is endowed with optimum HER catalytic properties by in situ-derived interfacial engineering via incorporation of molybdenum (Mo). The as-prepared Mo-CuNCo3 @CoN nanowires achieve a low HER overpotential of 58 mV@10 mA cm-2 , which is significantly higher than the pristine CuNCo3 . The assembled CuNCo3 -antiperovskite-based OWS not only entails a low overall voltage of 1.56 V@10 mA cm-2 , comparable to most recently reported metal-nitride-based OWS, but also exhibits excellent ZAB cyclic stability up to 310 h, specific capacity of 819.2 mAh g-1 , and maximum power density of 102 mW cm-2 . The as-designed antiperovskite-based ZAB could self-power the OWS system generating a high hydrogen rate, and creating opportunity for developing integrated portable multifunctional energy devices.

9.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150583

RESUMO

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37885218

RESUMO

A brain-like neuromorphic computing system, as compared with traditional Von Neumann architecture, has broad application prospects in the fields of emerging artificial intelligence (AI) due to its high fault tolerance, excellent plasticity, and parallel computing capability. A neuromorphic visuosensory and memory system, an important branch of neuromorphic computing, is the basis for AI to perceive, process, and memorize optical information, now still suffering from nonlinearity of synaptic weight, crosstalk issues, and integration incompatibility, hindering the high-level training and inference accuracy. In this work, we propose a new optoelectronic neuromorphic architecture by integrating an electrochromic device and a perovskite photodetector. Ascribing to the superior memory characteristics of the electrochromic device and sensitive light response of the perovskite photodetector, the neuromorphic device shows typical visual synaptic functionalities such as light triggering, neural facilitation, long-term potentiation, and depression (LTP and LTD). Furthermore, by adjusting the intensity and wavelength of external light signals, the visual synaptic function of the device can be modulated, enabling the device to exhibit high weight linearity in all current output ranges and improve information processing capability and image recognition accuracy. Moreover, both the electrochromic and perovskite layers possess the advantage of large area fabrication and integration, which enables the fabrication of large device arrays with high integration compatibility and scalability. In this study, 10 × 10 device arrays are demonstrated and each device shows uniform light responses, memory behaviors, and synaptic performances. MNIST and CIFAR-10 algorithms are used to simulate the image recognition properties of the synaptic architecture, and the calculated recognition accuracy is 97.94 and 91.04%, respectively, with an error less than 2.5%. The proposed artificial visual neuromorphic architecture will provide a potential device prototype for efficient visual neuromorphic systems.

11.
Angew Chem Int Ed Engl ; 62(37): e202303233, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37507348

RESUMO

Balancing the activation of H2 O is crucial for highly selective CO2 electroreduction (CO2 RR), as the protonation steps of CO2 RR require fast H2 O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2 O reduction. We herein proposed one molecular engineering strategy to regulate the H2 O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2 O density at the interface and the relative content of proton suppliers (free and coordinated H2 O), suppressing the HER. The adsorbed H2 O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O-H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5 M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within -0.75 to -1.15 V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.

12.
Chem Sci ; 14(19): 5177-5181, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37206397

RESUMO

Organic-doped polymers and room-temperature phosphorescence (RTP) mechanisms have been widely reported. However, RTP lifetimes >3 s are rare and RTP-enhancing strategies are incompletely understood. Herein, we demonstrate a rational molecular doping strategy to obtain ultralong-lived, yet bright RTP polymers. The n-π* transitions of boron- and nitrogen-containing heterocyclic compounds can promote a triplet-state population, and the grafting of boronic acid onto polyvinyl alcohol can inhibit molecular thermal deactivation. However, excellent RTP properties were achieved by grafting 1-0.1% (N-phenylcarbazol-2-yl)-boronic acid rather than (2-/3-/4-(carbazol-9-yl)phenyl)boronic acids to afford record-breaking ultralong RTP lifetimes up to 3.517-4.444 s. These results showed that regulation of the interacting position between the dopant and matrix molecules to directly confine the triplet chromophore could more effectively stabilize triplet excitons, disclosing a rational molecular-doping strategy for achieving polymers with ultralong RTP. Based on the energy-donor function of blue RTP, an ultralong red fluorescent afterglow was demonstrated by co-doping with an organic dye.

13.
Chem Rec ; 23(8): e202300064, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098871

RESUMO

Carbon materials (CMs) hold immense potential for applications across a wide range of fields. However, current precursors often confront limitations such as low heteroatom content, poor solubility, or complicated preparation and post-treatment procedures. Our research has unveiled that protic ionic liquids and salts (PILs/PSs), generated from the neutralization of organic bases with protonic acids, can function as economical and versatile small-molecule carbon precursors. The resultant CMs display attractive features, including elevated carbon yield, heightened nitrogen content, improved graphitic structure, robust thermal stability against oxidation, and superior conductivity, even surpassing that of graphite. These properties can be elaborate modulated by varying the molecular structure of PILs/PSs. In this Personal Account, we summarize recent developments in PILs/PSs-derived CMs, with a particular focus on the correlations between precursor structure and the physicochemical properties of CMs. We aim to impart insights into the foreseeable controlled synthesis of advanced CMs.

14.
Adv Mater ; 35(21): e2300695, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929182

RESUMO

Main group single atom catalysts (SACs) are promising for CO2 electroreduction to CO by virtue of their ability in preventing the hydrogen evolution reaction and CO poisoning. Unfortunately, their delocalized orbitals reduce the CO2 activation to *COOH. Herein, an O doping strategy to localize electrons on p-orbitals through asymmetric coordination of Ca SAC sites (Ca-N3 O) is developed, thus enhancing the CO2 activation. Theoretical calculations indicate that asymmetric coordination of Ca-N3 O improves electron-localization around Ca sites and thus promotes *COOH formation. X-ray absorption fine spectroscopy shows the obtained Ca-N3 O features: one O and three N coordinated atoms with one Ca as a reactive site. In situ attenuated total reflection infrared spectroscopy proves that Ca-N3 O promotes *COOH formation. As a result, the Ca-N3 O catalyst exhibits a state-of-the-art turnover frequency of ≈15 000 per hour in an H-cell and a large current density of -400 mA cm-2 with a CO Faradaic efficiency (FE) ≥ 90% in a flow cell. Moreover, Ca-N3 O sites retain a FE above 90% even with a 30% diluted CO2 concentration.

15.
J Colloid Interface Sci ; 638: 99-108, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736122

RESUMO

Anodes based on silicon/carbon composites promise their commercial prospects for next-generation lithium ion batteries owing to their merits of high specific capacity, enhanced ionic and electronic conductivity, and excellent compatibility. Herein, a series of carbonaceous framework/Si composites are designed and prepared by rational waste utilization. N, P codoped foam-like porous carbon/Si composites (FPC@Si) and N, P codoped carbon coated Si composites (NPC@Si) are fabricated by utilizing expired milk powder as a carbon source with facile treatment methods. The results indicate that the porous carbon skeleton and carbon shell can improve the conductivity of Si and stabilize the solid electrolyte interfaces to avoid direct contact between active material and electrolyte. Moreover, the influence of drastic volume expansion of Si on the anode can be efficiently alleviated during charge/discharge processes. Therefore, the Si/C composite electrodes present excellent long-term cycling stability and rate capability. The electrochemical performance shows that the reversible capacity of FPC@Si and NPC@Si can be respectively maintained at 587.3 and 731.2 mAh g-1 after 1000 charge/discharge cycles under 400 mA g-1. Most significantly, the optimized Si/C composite electrodes exhibit outstanding performance in the full cell tests, promising them great potential for practical applications. This study not only provides a valuable guidance for recycling of waste resources, but also supports a rational design strategy of advanced composite materials for high-performance energy storage devices.


Assuntos
Lítio , Leite , Animais , Emulsões , Pós , Íons , Carbono , Eletrodos
16.
Nat Commun ; 13(1): 6082, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241631

RESUMO

Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.

17.
Nat Commun ; 13(1): 5214, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064871

RESUMO

Low-molecular-weight adhesives (LMWAs) possess many unique features compared to polymer adhesives. However, fabricating LMWAs with adhesion strengths higher than those of polymeric materials is a significant challenge, mainly because of the relatively weak and unbalanced cohesion and interfacial adhesion. Herein, an ionic liquid (IL)-based adhesive with high adhesion strength is demonstrated by introducing an IL moiety into a Y-shaped molecule replete with hydrogen bonding (H-bonding) interactions. The IL moieties not only destroyed the rigid and ordered H-bonding networks, releasing more free groups to form hydrogen bonds (H-bonds) at the substrate/adhesive interface, but also provided electrostatic interactions that improved the cohesion energy. The synthesized IL-based adhesive, Tri-HT, could directly form thin coatings on various substrates, with high adhesion strengths of up to 12.20 MPa. Advanced adhesives with electrical conductivity, self-healing behavior, and electrically-controlled adhesion could also be fabricated by combining Tri-HT with carbon nanotubes.

18.
ACS Appl Mater Interfaces ; 14(39): 44429-44438, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129436

RESUMO

Graphite can be successfully used as an anode for potassium-ion batteries (PIBs), while its conversion to KC8 leads to huge volume expansion, destruction of solid electrolyte interphase (SEI), and thus poor cycling stability. Incorporating additives into electrolytes is an economical and effective way to construct robust SEI for high-performance PIBs. Herein, we developed a series of sulfur-containing additives for PIB graphite anodes, and the impacts of their molecular structure and contents on the SEI are also systematically investigated. Compared with butylene sulfites and 1,3-propane sultone, the 1,3,2-dioxathiolane 2,2-dioxide (DTD) additive endows the graphite electrode (GE) with a higher reversible capacity, and better cycling stability in both the dilute potassium bis(fluorosulfonyl)imide (KFSI)- and potassium hexafluorophosphate (KPF6)-based carbonate electrolyte, as a result of a thinner and sulfate-enriched SEI. Moreover, the addition of a trace amount (0.2 wt %) DTD to the electrolyte can effectively protect the GE running over 800 cycles at 1 C. Excessive additives in the electrolyte will induce continuous SEI growth and render a rapid capacity fading of the GE. This strategy using the electrolyte additive paves the way for the design of novel PIB electrolytes and thus provides a great opportunity for commercial PIBs.

19.
Small ; 18(37): e2203011, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35971029

RESUMO

Solid-state Li batteries are receiving increasing attention as a prospective energy storage system due to the high energy density and improved safety. However, the high interfacial resistance between solid-state electrolyte and electrode results in sluggish Li+ transport kinetics. To tackle the interfacial problem and prolong the cycle life of solid-state Li batteries, a quasi-solid-state electrolyte (QSSE) based on a solvate ionic liquid (SIL) space-restricted in nanocages of UIO-66 (SIL/UIO-66) is prepared in this study. Benefiting from the effective spatial confinement of the TFSI- by the pore UIO-66 and the strong chemical interactions between the SIL and metal atoms, SIL/UIO-66 QSSE exhibits high ionic conductivity and good compatibility with electrodes. As a result, Li|QSSE|LFP cells demonstrate excellent rate capability and cycle stability in a wide temperature range of 25-90 °C. This study provides a realistic strategy for the fabrication of safe solid electrolytes with excellent compatibility and long cycle life for high-performance QSSE Li-ion batteries.

20.
J Colloid Interface Sci ; 625: 373-382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35717851

RESUMO

Capacity retention is one of the key factors affecting the performance of silicon (Si)-based lithium-ion batteries and other energy storage devices. Herein, a three dimension (3D) network self-healing binder (denoted as PVA + LB) consisting of polyvinyl alcohol (PVA) and lithium metaborate (LiBO2) solution is proposed to improve the cycle stability of Si-based lithium-ion batteries. The reversible capacity of the silicon electrode is maintained at 1767.3 mAh g-1 after 180 cycles when employing PVA + LB as the binder, exhibiting excellent cycling stability. In addition, the silicon/carbon (Si/C) anode with the PVA + LB binder presents superior electrochemical performance, achieving a stable cycle life with a capacity retention of 73.7% (858.3 mAh g-1) after 800 cycles at a current density of 1 A g-1. The high viscosity and flexibility, 3D network structure, and self-healing characteristics of the PVA + LB binder are the main reasons to improve the stability of the Si or Si/C contained electrodes. The novel self-healing binder shows great potential in designing the new generation of silicon-based lithium-ion batteries and even electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA