Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(8): 3151-3161, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791311

RESUMO

Harmful particles such as heavy metal particles in the human body can cause many problems such as kidney stones, gallstones, and cerebrovascular diseases. Therefore, it is critical to separate them from the blood and perform a systematic analysis as early as possible. Here, we apply eutectic gallium indium (EGaIn) microparticles as a model to study the separation of particles from blood, thanks to their properties of low toxicity, excellent degradability, and negligible vapor pressure. In particular, the dielectrophoresis (DEP) separation method is employed to separate EGaIn of different sizes and characteristics in blood. First, the screen-printing method is used to create EGaIn microparticles with diameters of 15, 23, 18, and 11 µm. According to the lifetime test, these microparticles can last more than 1 month, as evidenced by their surface oxidation characteristics. Moreover, a DEP platform with W-type electrodes is developed to sort EGaIn particles from whole human blood. The results show that a sorting efficiency of 95% can be attained, which is similar to the separation efficiency of 98% achieved by finite element analysis (FEA) using COMSOL software based on the orthogonal array experiment method. The proposed study successfully validates the use of the DEP method to separate particles from human blood, providing insights into heavy metal particle separating, drug screening, and cell sorting and potentially broadening the applications in environmental analysis, food engineering, and bioengineering.


Assuntos
Gálio , Índio , Humanos , Eletroforese/métodos , Eletrodos , Separação Celular/métodos
2.
Micromachines (Basel) ; 13(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36557441

RESUMO

Diabetes remains a great threat to human beings' health and its world prevalence is projected to reach 9.9% by 2045. At present, the detection methods used are often invasive, cumbersome and time-consuming, thus increasing the burden on patients. In this paper, we propose a novel noninvasive and low-cost biosensor capable of detecting glucose in human sweat using enzyme-based electrodes for point-of-care uses. Specifically, an electrochemical method is applied for detection and the electrodes are covered with multilayered films including ferrocene-polyaniline (F-P), multi-walled carbon nanotubes (MWCNTs) and glucose oxidase (GOx) on Cu substrates (GOx/MWCNTs/F-P/Cu). The coated layers enhance the immobilization of GOx, increase the conductivity of the anode and improve the electrochemical properties of the electrode. Compared with the Cu electrode and the F-P/Cu electrode, a maximum peak current is obtained when the MWCNTs/F-P/Cu electrode is applied. We also study its current response by cyclic voltammetry (CV) at different concentrations (0-2.0 mM) of glucose solution. The best current response is obtained at 0.25 V using chronoamperometry. The effective working lifetime of an electrode is up to 8 days. Finally, to demonstrate the capability of the electrode, a portable, miniaturized and integrated detection device based on the GOx/MWCNTs/F-P/Cu electrode is developed. The results exhibit a short response time of 5 s and a correlation coefficient R2 of 0.9847 between the response current of sweat with blood glucose concentration. The LOD is of 0.081 mM and the reproducibility achieved in terms of RSD is 3.55%. The sweat glucose sensor is noninvasive and point-of-care, which shows great development potential in the health examination and monitoring field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA