Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1377626, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799103

RESUMO

Introduction: Phosphorus (P) fertilizer is critical to maintain a high yield and quality of alfalfa (Medicago sativa L.). There are several fertilizer types and soil types in China, and the application of a single type of P fertilizer may not be suitable for present-day alfalfa production. Methods: In order to select the optimal combination of alfalfa and soil type and fertilizer type for improving P utilization efficiency. We conducted a greenhouse pot experiment, calcium superphosphate (SSP), diammonium phosphate (DAP), ammonium polyphosphate (APP), potassium dihydrogen phosphate (KP), and no-fertilizer control treatments were applied to alfalfa in sandy and saline-alkali soils. The response of alfalfa root morphology and rhizosphere processes to different P fertilizers was investigated. Results and discussion: The results showed that shoot biomass of alfalfa was slightly higher in sandy soil than in saline-alkali soil. Shoot biomass of alfalfa increased by 223%-354% in sandy soil under P treatments compared with the control, and total root length increased significantly by 74% and 53% in DAP and SSP treatments, respectively. In saline-alkali soil, alfalfa shoot biomass was significantly increased by 229% and 275% in KP and DAP treatments, and total root length was increased by 109% only in DAP treatment. Net P uptake of alfalfa in DAP treatment was the highest in both soils, which were 0.73 and 0.54 mg plant-1, respectively. Alfalfa shoot P concentration was significantly positively correlated with shoot and root biomass (P < 0.05, 0.01 or 0.001) whereas negatively correlated with acid phosphatase concentration (P < 0.05). Improvement of plant growth and P uptake induced by P fertilizer application was greater in sandy soil than in saline-alkali soil. DAP and KP was the most efficient P fertilizers in both sandy soil and saline-alkali soil.

2.
Rapid Commun Mass Spectrom ; 36(21): e9376, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35945033

RESUMO

The analysis of glycoproteins and the comparison of protein N-glycosylation from different eukaryotic origins require unbiased and robust analytical workflows. The structural and functional analysis of vertebrate protein N-glycosylation currently depends extensively on bacterial peptide-N4-(N-acetyl-ß-glucosaminyl) asparagine amidases (PNGases), which are indispensable enzymatic tools in releasing asparagine-linked oligosaccharides (N-glycans) from glycoproteins. So far, only limited PNGase candidates are available for N-glycans analysis, and particularly the analysis of plant and invertebrate N-glycans is hampered by the lack of suitable PNGases. Furthermore, liquid chromatography-mass spectrometry (LC-MS) workflows, such as hydrogen deuterium exchange mass spectrometry (HDX-MS), require a highly efficient enzymatic release of N-glycans at low pH values to facilitate the comprehensive structural analysis of glycoproteins. Herein, we describe a previously unstudied superacidic bacterial N-glycanase (PNGase H+ ) originating from the soil bacterium Rudaea cellulosilytica (Rc), which has significantly improved enzymatic properties compared to previously described PNGase H+ variants. Active and soluble recombinant PNGase Rc was expressed at a higher protein level (3.8-fold) and with higher specific activity (~56% increase) compared to the currently used PNGase H+ variant from Dyella japonicum (Dj). Recombinant PNGase Rc was able to deglycosylate the glycoproteins horseradish peroxidase and bovine lactoferrin significantly faster than PNGase Dj (10 min vs. 6 h). The versatility of PNGase Rc was demonstrated by releasing N-glycans from a diverse array of samples such as peach fruit, king trumpet mushroom, mouse serum, and the soil nematode Caenorhabditis elegans. The presence of only two disulfide bonds shown in the AlphaFold protein model (so far all other superacidic PNGases possess more disulfide bonds) could be corroborated by intact mass- and peptide mapping analysis and provides a possible explanation for the improved recombinant expression yield of PNGase Rc.


Assuntos
Asparagina , Espectrometria de Massa com Troca Hidrogênio-Deutério , Amidoidrolases/metabolismo , Animais , Medição da Troca de Deutério , Dissulfetos , Eucariotos/metabolismo , Gammaproteobacteria , Glicoproteínas/química , Peroxidase do Rábano Silvestre/metabolismo , Lactoferrina/metabolismo , Camundongos , Oligossacarídeos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polissacarídeos/química , Solo
3.
Glycoconj J ; 37(6): 767-775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926333

RESUMO

ß1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine ß4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in ß1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu ß1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that ß1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu ß1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.


Assuntos
Galactose/metabolismo , Galactosiltransferases/genética , Polissacarídeos/sangue , Animais , Bovinos , Feminino , Galactosiltransferases/metabolismo , Glicosilação , Células HEK293 , Humanos , Lactação/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA