Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chembiochem ; 25(6): e202300841, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38289703

RESUMO

The opioids are powerful analgesics yet possess contingencies that can lead to opioid-use disorder. Chemical probes derived from the opioid alkaloids can provide deeper insight into the molecular interactions in a cellular context. Here, we designed and developed photo-click morphine (PCM-2) as a photo-affinity probe based on morphine and dialkynyl-acetyl morphine (DAAM) as a metabolic acetate reporter based on heroin. Application of these probes to SH-SY5Y, HEK293T, and U2OS cells revealed that PCM-2 and DAAM primarily localize to the lysosome amongst other locations inside the cell by confocal microscopy and chemical proteomics. Interaction site identification by mass spectrometry revealed the mitochondrial phosphate carrier protein, solute carrier family 25 member 3, SLC25A3, and histone H2B as acylation targets of DAAM. These data illustrate the utility of chemical probes to measure localization and protein interactions in a cellular context and will inform the design of probes based on the opioids in the future.


Assuntos
Analgésicos Opioides , Neuroblastoma , Humanos , Células HEK293 , Morfina
2.
Nano Today ; 492023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037608

RESUMO

It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.

3.
Neuropharmacology ; 227: 109442, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731721

RESUMO

Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining µ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated ß-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.


Assuntos
Analgésicos Opioides , Fentanila , Masculino , Camundongos , Animais , Cricetinae , Cricetulus , Fentanila/farmacologia , Analgésicos Opioides/farmacologia , Naloxona , Relação Estrutura-Atividade , Receptores Opioides mu/agonistas
4.
Nano Today ; 482023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36711067

RESUMO

Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.

5.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
6.
Hepatology ; 77(3): 774-788, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908246

RESUMO

BACKGROUND AND AIMS: The sensitivity of current surveillance methods for detecting early-stage hepatocellular carcinoma (HCC) is suboptimal. Extracellular vesicles (EVs) are promising circulating biomarkers for early cancer detection. In this study, we aim to develop an HCC EV-based surface protein assay for early detection of HCC. APPROACH AND RESULTS: Tissue microarray was used to evaluate four potential HCC-associated protein markers. An HCC EV surface protein assay, composed of covalent chemistry-mediated HCC EV purification and real-time immuno-polymerase chain reaction readouts, was developed and optimized for quantifying subpopulations of EVs. An HCC EV ECG score, calculated from the readouts of three HCC EV subpopulations ( E pCAM + CD63 + , C D147 + CD63 + , and G PC3 + CD63 + HCC EVs), was established for detecting early-stage HCC. A phase 2 biomarker study was conducted to evaluate the performance of ECG score in a training cohort ( n  = 106) and an independent validation cohort ( n  = 72).Overall, 99.7% of tissue microarray stained positive for at least one of the four HCC-associated protein markers (EpCAM, CD147, GPC3, and ASGPR1) that were subsequently validated in HCC EVs. In the training cohort, HCC EV ECG score demonstrated an area under the receiver operating curve (AUROC) of 0.95 (95% confidence interval [CI], 0.90-0.99) for distinguishing early-stage HCC from cirrhosis with a sensitivity of 91% and a specificity of 90%. The AUROCs of the HCC EV ECG score remained excellent in the validation cohort (0.93; 95% CI, 0.87-0.99) and in the subgroups by etiology (viral: 0.95; 95% CI, 0.90-1.00; nonviral: 0.94; 95% CI, 0.88-0.99). CONCLUSION: HCC EV ECG score demonstrated great potential for detecting early-stage HCC. It could augment current surveillance methods and improve patients' outcomes.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/análise , Vesículas Extracelulares/química , Proteínas de Membrana , Eletrocardiografia , Glipicanas
7.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187674

RESUMO

Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide chemical probe EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and availability of functional mRNA pools that can be depleted due to extensive alternative splicing. We further introduce a comprehensive list of proteins involved in splicing and leverage both cysteine- and protein-directed activity-based protein profiling (ABPP) data with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in primary human T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.

8.
Adv Sci (Weinh) ; 9(14): e2105853, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35486030

RESUMO

Well-preserved molecular cargo in circulating extracellular vesicles (EVs) offers an ideal material for detecting oncogenic gene alterations in cancer patients, providing a noninvasive diagnostic solution for detection of disease status and monitoring treatment response. Therefore, technologies that conveniently isolate EVs with sufficient efficiency are desperately needed. Here, a lipid labeling and click chemistry-based EV capture platform ("Click Beads"), which is ideal for EV message ribonucleic acid (mRNA) assays due to its efficient, convenient, and rapid purification of EVs, enabling downstream molecular quantification using reverse transcription digital polymerase chain reaction (RT-dPCR) is described and demonstrated. Ewing sarcoma protein (EWS) gene rearrangements and kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutation status are detected and quantified using EVs isolated by Click Beads and matched with those identified in biopsy specimens from Ewing sarcoma or pancreatic cancer patients. Moreover, the quantification of gene alterations can be used for monitoring treatment responses and disease progression.


Assuntos
Vesículas Extracelulares , Sarcoma de Ewing , Carcinogênese/genética , Química Click , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genes ras , Humanos , Lipídeos , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
9.
Biosens Bioelectron ; 199: 113854, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896918

RESUMO

Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.


Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Tumores Neuroendócrinos , Biomarcadores Tumorais , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia
10.
Nat Commun ; 12(1): 4408, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344888

RESUMO

Placenta accreta spectrum (PAS) is a high-risk obstetrical condition associated with significant morbidity and mortality. Current clinical screening modalities for PAS are not always conclusive. Here, we report a nanostructure-embedded microchip that efficiently enriches both single and clustered circulating trophoblasts (cTBs) from maternal blood for detecting PAS. We discover a uniquely high prevalence of cTB-clusters in PAS and subsequently optimize the device to preserve the intactness of these clusters. Our feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. A logistic regression model is constructed using a training cohort and then cross-validated and tested using an independent cohort. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Our assay holds the potential to improve current diagnostic modalities for the early detection of PAS.


Assuntos
Testes para Triagem do Soro Materno/métodos , Placenta Acreta/diagnóstico , Trofoblastos/patologia , Adulto , Biomarcadores/sangue , Agregação Celular , Estudos de Coortes , Diagnóstico Diferencial , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Testes para Triagem do Soro Materno/instrumentação , Pessoa de Meia-Idade , Nanoestruturas , Placenta Acreta/sangue , Placenta Prévia/sangue , Placenta Prévia/diagnóstico , Gravidez , Curva ROC , Reprodutibilidade dos Testes
11.
J Med Chem ; 63(22): 13618-13637, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170687

RESUMO

In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (µOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named MP135 that exhibits high G-protein activity at µ-δ heteromers compared to the homomeric δOR or µOR and low ß-arrestin2 recruitment activity at all three. Furthermore, MP135 exhibits distinct signaling profile, as compared to the previously identified agonist targeting µ-δ heteromers, CYM51010. Pharmacological characterization of MP135 supports the utility of this compound as a molecule that could be developed as an antinociceptive agent similar to morphine in rodents. In vivo characterization reveals that MP135 maintains untoward side effects such as respiratory depression and reward behavior; together, these results suggest that optimization of MP135 is necessary for the development of therapeutics that suppress the classical side effects associated with conventional clinical opioids.


Assuntos
Fentanila/análogos & derivados , Receptores Opioides delta/agonistas , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Linhagem Celular , Fentanila/síntese química , Fentanila/farmacologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Long-Evans , Receptores Opioides delta/metabolismo
12.
Sci Rep ; 10(1): 15796, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978445

RESUMO

Inspired by the interesting natural antimicrobial properties of honey, biohybrid composite materials containing a low-fouling polymer hydrogel network and an encapsulated antimicrobial peroxide-producing enzyme have been developed. These synergistically combine both passive and active mechanisms for reducing microbial bacterial colonization. The mechanical properties of these materials were assessed using compressive mechanical analysis, which revealed these hydrogels possessed tunable mechanical properties with Young's moduli ranging from 5 to 500 kPa. The long-term enzymatic activities of these materials were also assessed over a 1-month period using colorimetric assays. Finally, the passive low-fouling properties and active antimicrobial activity against a leading opportunistic pathogen, Staphylococcus epidermidis, were confirmed using bacterial cell counting and bacterial adhesion assays. This study resulted in non-adhesive substrate-permeable antimicrobial materials, which could reduce the viability of planktonic bacteria by greater than 7 logs. It is envisaged these new biohybrid materials will be important for reducing bacterial adherence in a range of industrial applications.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana , Materiais Biocompatíveis/química , Mel , Hidrogéis/química , Polímeros/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Teste de Materiais , Staphylococcus epidermidis/efeitos dos fármacos
13.
Mol Pharmacol ; 98(4): 518-527, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723770

RESUMO

The µ-opioid receptor gene undergoes extensive alternative splicing to generate an array of splice variants. One group of splice variants excludes the first transmembrane (TM) domain and contains six TM domains. These 6TM variants are essential for the action of a novel class of analgesic drugs, including 3-iodobenzoyl-6ß-naltrexamide, which is potent against a spectrum of pain models without exhibiting the adverse side effects of traditional opiates. The 6TM variants are also involved in analgesic action through other drug classes, including δ-opioid and κ-opioids and α 2-adrenergic drugs. Of the five 6TM variants in mouse, mouse µ-opioid receptor (mMOR)-1G is abundant and conserved from rodent to human. In the present study, we demonstrate a new function of mMOR-1G in enhancing expression of the full-length 7TM µ-opioid receptor, mMOR-1. When coexpressed with mMOR-1 in a Tet-Off inducible CHO cell line, mMOR-1G has no effect on mMOR-1 mRNA expression but greatly increases mMOR-1 protein expression in a dose-dependent manner determined by opioid receptor binding and [35S] guanosine 5'-3-O-(thio)triphosphate binding. Subcellular fractionation analysis using OptiPrep density gradient centrifugation shows an increase of functional mMOR-1 receptor in plasma membrane-enriched fractions. Using a coimmunoprecipitation approach, we further demonstrate that mMOR-1G physically associates with mMOR-1 starting at the endoplasmic reticulum, suggesting a chaperone-like function. These data provide a molecular mechanism for how mMOR-1G regulates expression and function of the full-length 7TM µ-opioid receptor. SIGNIFICANCE STATEMENT: The current study establishes a novel function of mouse µ-opioid receptor (mMOR)-1G, a truncated splice variant with six transmembrane (TM) domains of the mouse µ-opioid receptor gene, in enhancing expression of the full-length 7TM mMOR-1 through a chaperone-like function.


Assuntos
Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Processamento Alternativo , Animais , Células CHO , Linhagem Celular , Cricetulus , Retículo Endoplasmático/metabolismo , Variação Genética , Humanos , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Multimerização Proteica , Receptores Opioides mu/química
14.
J Appl Toxicol ; 38(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460972

RESUMO

The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg-1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg-1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway.


Assuntos
Injúria Renal Aguda/metabolismo , Gentamicinas , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Eliminação Renal , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Animais , Antiporters/metabolismo , Modelos Animais de Doenças , Furosemida/metabolismo , Taxa de Filtração Glomerular , Inulina/urina , Rim/fisiopatologia , Masculino , Metformina/farmacocinética , Metformina/urina , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ratos Wistar , Ácido p-Aminoipúrico/metabolismo
15.
Biopharm Drug Dispos ; 37(9): 511-521, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27662517

RESUMO

Drug interactions are one of the commonest causes of side effects, particularly in long-term therapy. The aim of the current study was to investigate the possible effects of metoprolol on the pharmacokinetics of metformin in rats and to clarify the mechanism of drug interaction. In this study, rats were treated with metformin alone or in combination with metoprolol. Plasma, urine and tissue concentrations of metformin were determined by HPLC. Western blotting and real-time qPCR were used to evaluate the expression of rOCTs and rMATE1. The results showed that, after single or 7-day repeated administration, the plasma concentrations of metformin in the co-administration group were significantly decreased compared with that in the metformin group. However, the parameter V/F of metformin in the co-administration group was markedly increased compared with that in the metformin group. The hepatic, renal and muscular Kp of metformin were markedly elevated after co-administration with metoprolol. Consistently, metformin uptake in rat kidney slices was significantly induced by metoprolol. In addition, multiple administrations of metoprolol significantly reduced the expression of rMATE1 in rat kidney as well as the urinary excretion of metformin. Importantly, after long-term administration, lactic acid and uric acid levels in the co-administration group were increased by 25% and 26%, respectively, compared with that in the metformin group. These results indicate that metoprolol can decrease the plasma concentration of metformin via the induction of hepatic, renal and muscular uptake, and long-term co-administration of metformin and metoprolol can cause elevated lactic acid and uric acid levels. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Rim/metabolismo , Fígado/metabolismo , Metformina/sangue , Metoprolol/metabolismo , Músculo Esquelético/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/sangue , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Interações Medicamentosas/fisiologia , Hipoglicemiantes/sangue , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Metformina/farmacologia , Metoprolol/sangue , Metoprolol/farmacologia , Músculo Esquelético/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA