Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Commun ; 13(1): 7080, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400782

RESUMO

Prediction of the South Asian summer monsoon (SASM) has remained a challenge for both scientific research and operational climate prediction for decades. By identifying two dominant modes of the SASM, here we show that the unsatisfactory prediction may be due to the fact that the existing SASM indices are mostly related to the less predictable second mode. The first mode, in fact, is highly predictable. It is physically linked to the variation of the Indian monsoon trough coupled with large rainfall anomalies over core monsoon zone and the northern Bay of Bengal. An index is constructed as a physical proxy of this first mode, which can be well predicted one season in advance, with an overall skill of 0.698 for 1979-2020. This result suggests a predictable prospect of the SASM, and we recommend the new index for real-time monitoring and prediction of the SASM.


Assuntos
Clima , Tempestades Ciclônicas , Estações do Ano
3.
Sci Total Environ ; 832: 155028, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390371

RESUMO

BACKGROUND: High atmospheric temperature has been associated with the occurrence of bacillary dysentery (BD). Recent studies have suggested that hot extremes may influence health outcomes, however, none have examined the association between hot extremes and BD risk, especially at the national level. OBJECTIVES: To assess the effect and attributable burden of hot extremes on BD cases and to identify populations at high risk of BD. METHODS: Daily incident BD data of 31 provincial capital cities from 2010 to 2018 were collected from the Chinese Center for Disease Control and Prevention, weather data was obtained from the fifth generation of the European Re-Analysis Dataset. Three types of hot extremes, including hot day, hot night, and hot day and night, were defined according to single or sequential occurrence of daytime hot and nighttime hot within 24 h. A two-stage analytical strategy combined with distributed lag non-linear models (DLNM) was used to evaluate city-specific associations and national pooled estimates. RESULTS: Hot extremes were significantly associated with the risk of BD on lagged 1-6 days. The overall cumulative relative risk (RR) was 1.136 [95% confidence interval (CI): 1.022, 1.263] for hot day, 1.181 (95% CI: 1.019, 1.369) for hot night, and 1.154 (95% CI: 1.038, 1.283) for hot day and night. Northern residents, females, and children younger than or equal to 14 years old were vulnerable under hot night, southern residents were vulnerable under hot day, and males were vulnerable under hot day and night. 1.854% (95% CI: 1.294%, 2.205%) of BD cases can be attributable to hot extremes, among which, hot night accounted for a large proportion. CONCLUSIONS: Hot extremes may significantly increase the incidence risk and disease burden of BD. Type-specific protective measures should be taken to reduce the risk of BD, especially in those we found to be particularly vulnerable.


Assuntos
Disenteria Bacilar , Criança , China/epidemiologia , Cidades/epidemiologia , Disenteria Bacilar/epidemiologia , Feminino , Temperatura Alta , Humanos , Masculino , Temperatura
4.
Sci Rep ; 8(1): 15352, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337575

RESUMO

El Niño-Southern Oscillation (ENSO) exerts tremendous influences on the global climate. Through dynamic lifting and thermal forcing, the Maritime Continent (MC) plays an important role in affecting global atmospheric circulation. In spite of the extensive studies on ENSO mechanisms, the influence of MC on the characteristics of ENSO life cycle remains unclear. Our coupled model experiments reveal that the absence of the MC land contributes to a strong ENSO asymmetry and a weakened nonlinear atmospheric response to the combined seasonal and interannual SST variations (i.e. the combination mode) that prolongs the warm events, resulting in a reduction of ENSO frequency. On the other hand, our experiments suggest that the global climate model applied (NCAR CESM) overestimates the MC topographic uplifting effect on ENSO simulation. Overall, this study provides a new physical insight into the nature of the MC influence on ENSO evolution.

5.
Nat Commun ; 7: 11721, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251873

RESUMO

Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the 'atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA