Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Nutr ; 17: 123-133, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766516

RESUMO

The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.

2.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539817

RESUMO

Intrauterine growth restriction (IUGR) pigs are characterized by long-term growth failure, metabolic disorders, and intestinal microbiota imbalance. The characteristics of the negative effects of IUGR at different growth stages of pigs are still unclear. Therefore, this study explored through multi-omics analyses whether the IUGR damages the intestinal barrier function and alters the colonization and metabolic profiles of the colonic microbiota in growing-finishing pigs. Seventy-two piglets (36 IUGR and 36 NBW) were allocated for this trial to analyze physiological and plasma biochemical parameters, as well as oxidative damage and inflammatory response in the colon. Moreover, the colonic microbiota communities and metabolome were examined using 16s rRNA sequencing and metabolomics technologies to reveal the intestinal characteristics of IUGR pigs at different growth stages (25, 50, and 100 kg). IUGR altered the concentrations of plasma glucose, total protein, triglycerides, and cholesterol. Colonic tight junction proteins were markedly inhibited by IUGR. IUGR decreased plasma T-AOC, SOD, and GSH levels and colonic SOD-1, SOD-2, and GPX-4 expressions by restraining the Nrf2/Keap1 signaling pathway. Moreover, IUGR increased colonic IL-1ß and TNF-α levels while reducing IL-10, possibly through activating the TLR4-NF-κB/ERK pathway. Notably, IUGR pigs had lower colonic Streptococcus abundance and Firmicutes-to-Bacteroidetes ratio at the 25 kg BW stage while having higher Firmicutes abundance at the 100 kg BW stage; moreover, IUGR pigs had lower SCFA concentrations. Metabolomics analysis showed that IUGR increased colonic lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds concentrations and enriched three differential metabolic pathways, including linoleic acid, sphingolipid, and purine metabolisms throughout the trial. Collectively, IUGR altered the nutrient metabolism, redox status, and colonic microbiota community and metabolite profiles of pigs and continued to disrupt colonic barrier function by reducing antioxidant capacity via the Nrf2/Keap1 pathway and activating inflammation via the TLR4-NF-κB/ERK pathway during the growing-finishing stage. Moreover, colonic Firmicutes and Streptococcus could be potential regulatory targets for modulating the metabolism and health of IUGR pigs.

3.
J Anim Sci Biotechnol ; 13(1): 117, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36320049

RESUMO

BACKGROUND: Intrauterine growth retardation (IUGR) is associated with severely impaired nutrient metabolism and intestinal development of pigs. Our previous study found that IUGR altered intestinal microbiota and metabolites in the colon. However, the consequences of IUGR on bile acid metabolism in pigs remained unclear. The present study aimed to investigate the bile acid metabolism in the liver and the profile of bile acid derivatives in the colon of growing pigs with IUGR using bile acid targeted metabolomics. Furthermore, we determined correlations between colonic microbiota composition and metabolites of IUGR and normal birth weight (NBW) pigs at different growth stages that were 7, 21, and 28-day-old, and the average body weight (BW) of 25, 50, and 100 kg of the NBW pigs. RESULTS: The results showed that the plasma total bile acid concentration was higher (P < 0.05) at the 25 kg BW stage and tended to increase (P = 0.08) at 28-day-old in IUGR pigs. The hepatic gene expressions related to bile acid synthesis (CYP7A1, CYP27A1, and NTCP) were up-regulated (P < 0.05), and the genes related to glucose and lipid metabolism (ATGL, HSL, and PC) were down-regulated (P < 0.05) at the 25 kg BW stage in IUGR pigs when compared with the NBW group. Targeted metabolomics analysis showed that 29 bile acids and related compounds were detected in the colon of pigs. The colonic concentrations of dehydrolithocholic acid and apocholic acid were increased (P < 0.05), while isodeoxycholic acid and 6,7-diketolithocholic acid were decreased (P < 0.05) in IUGR pigs, when compared with the NBW pigs at the 25 kg BW stage. Moreover, Spearman's correlation analysis revealed that colonic Unclassified_[Mogibacteriaceae], Lachnospira, and Slackia abundances were negatively correlated (P < 0.05) with dehydrolithocholic acid, as well as the Unclassified_Clostridiaceae abundance with 6,7-diketolithocholic acid at the 25 kg BW stage. CONCLUSIONS: These findings suggest that IUGR could affect bile acid and glucolipid metabolism in growing pigs, especially at the 25 kg BW stage, these effects being paralleled by a modification of bile acid derivatives concentrations in the colonic content. The plausible links between these modified parameters are discussed.

4.
Front Microbiol ; 13: 989060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187985

RESUMO

Newborn animals with intrauterine growth restriction (IUGR) are characterized by impaired intestinal structure and function; however, their intestinal microbiota and metabolome profiles have not been fully identified. The present study investigated the differences in colonic microbiota, metabolomics, and barrier function-related gene expression profiles between the IUGR and normal birth weight (NBW) piglets at 7, 21, and 28 days of age. Forty-eight piglets (24 NBW and 24 IUGR) from 24 litters were assigned to assess the differences in colonic microbiota, metabolomics, and gene expression between IUGR and NBW piglets. Compared with the NBW piglets, IUGR piglets showed decreased Shannon index and increased Simpson index at 7 days of age and Chao1 index at 21 days of age (p < 0.05). The IUGR piglets had lower abundances of Firmicutes, Subdoligranulum, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-003 at 7 days of age, and Bacteroidetes, Phascolarctobacterium, and Ruminococcaceae_UCG-005 at 21 days of age, when compared with the NBW piglets (p < 0.05). Metabolomics analysis showed significant changes in 147 metabolites mainly involved in organic acids and their derivatives in the colon. Six differential metabolic pathways were significantly enriched, including purine metabolism, amino sugar/nucleotide sugar metabolism, ubiquinone/other terpenoid-quinone biosynthesis, phenylalanine/tyrosine/tryptophan biosynthesis, phenylalanine metabolism, and histidine metabolism. Spearman's correlation analysis further demonstrated significant correlations between colonic microbiota and metabolites. In addition, colonic isobutyrate at 7 days of age, isovalerate and total short-chain fatty acids (SCFAs) at 21 days of age, and acetate, propionate, butyrate, and total SCFAs levels at 28 days of age were lower and isovalerate was higher at 28 days of age in the IUGR piglets than in the NBW piglets (p < 0.05). Furthermore, the mRNA expression of zonula occludens (ZO)-1 at 7 days of age, ZO-1, occludin, and interleukin (IL)-4 at 21 days of age were down-regulated in the IUGR piglets, whereas tumor necrosis factor (TNF)-α and nuclear factor-kappa B (NF-κB) at 28 days of age were up-regulated, when compared with the NBW piglets (p < 0.05). The findings suggest that the IUGR pigs present abnormal microbiota and nutrient metabolism in the colon, which may further affect the intestine barrier function by regulating gene expressions.

5.
Front Vet Sci ; 8: 680208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222403

RESUMO

The present study determined the effects of dietary xylo-oligosaccharides (XOS) supplementation on the morphology of jejunum and ileum epithelium, fecal microbiota composition, metabolic activity, and expression of genes related to colon barrier function. A total of 150 piglets were randomly assigned to one of five groups: a blank control group (receiving a basal diet), three XOS groups (receiving the basal diet supplemented with 100, 250, and 500 g/t XOS, respectively), as well as a positive control group, used as a matter of comparison, that received the basal diet supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3,000 mg/kg ZnO. The trial was carried out for 56 days. The results showed that the lowest dose tested (100 g/t XOS) increased (P < 0.05) the ileal villus height, the relative amount of Lactobacillus and Bifidobacterium spp., and the concentration of acetic acid and short-chain fatty acid in feces when compared with the blank control group. In conclusion, dietary 100 g/t XOS supplementation modifies the intestinal ecosystem in weaned piglets in an apparently overall beneficial way.

6.
Front Vet Sci ; 7: 575685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330695

RESUMO

Nutrients in the maternal diet favor the growth and development of suckling piglets and alter their gut microbiota composition and metabolic activity, thus affecting the hosts. The present study analyzed, in suckling piglets from sows receiving antibiotic or synbiotic supplements from pregnancy to lactation, several biochemical parameters, oxidative/anti-oxidative indices, inflammatory cytokines, and ingestion-related factor levels in plasma, as well as colonic microbiota composition and metabolic activity, and mucosal expression of genes related to the intestinal barrier function. Compared with the control group, maternal synbiotic supplementation decreased (P < 0.05) the plasma levels of glucose, AMM, TC, low-density lipoprotein-cholesterol (LDL-C), MDA, H2O2, ghrelin, CCK, PP, IL-1ß, IL-2, IL-6, TNF-α, Ala, Cys, Tau, and ß-AiBA, the levels of propionate and total short-chain fatty acids (SCFAs) in the colonic luminal content, and colonic abundances of RFN20, Anaerostipes, and Butyricimonas; while increased (P < 0.05) the plasma levels of urea nitrogen (UN), Ile, Leu, α-AAA, α-ABA, and 1-Mehis, as well as colonic abundances of Sphingomonas, Anaerovorax, Sharpea, and Butyricicoccus. Compared with the antibiotic group, maternal synbiotic supplementation decreased (P < 0.05) the plasma levels of glucose, gastrin, and Ala, as well as abundances of Pasteurella and RFN20 and propionate level in the colonic content. Expression of genes coding for E-cadherin, Occludin, ZO-1, ZO-2, IL-10, and interferon-α were down-regulated in the colonic mucosa. The synbiotic supplementation increased (P < 0.05) the plasma levels of UN, Leu, α-ABA, and 1-Mehis, the abundances of Anaerovorax, Sharpea, and Butyricicoccus and expression of genes coding for E-cadherin, Occludin, ZO-1, ZO-2, IL-10, and interferon-α. Spearman correlation analysis showed that there was a positive correlation between colonic Anaerostipes abundance and acetate and SCFAs levels; whereas a negative correlation between Fusobacteria and Fusobacterium abundances and acetate level. These findings suggest that synbiotic supplementation in the maternal diet improved nutrient metabolism and intestinal barrier permeability, reduced oxidative stress, and modified colonic microbiota composition and metabolic activity in suckling piglets.

7.
Mediators Inflamm ; 2020: 8829072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162832

RESUMO

This study was conducted to analyze plasma reproductive hormone and biochemical parameter changes, as well as fecal microbiota composition and metabolites in sows, at different pregnancy and lactation stages, using Bama mini pig as an experimental animal model. We found that plasma prolactin (PRL), progesterone, follicle-stimulating hormone (FSH), and estrogen levels decreased from day 45 to day 105 of pregnancy. Plasma total protein and albumin levels were lower in pregnant sows, while glucose, urea nitrogen, total cholesterol, and high-density lipoprotein-cholesterol, as well as fecal acetate, butyrate, valerate, total short-chain fatty acids, skatole, and tyramine levels, were higher in lactating sows. Interestingly, the lactating sows showed lower α-diversity and Spirochaetes and Verrucomicrobia relative abundances, while pregnant sows showed a higher Proteobacteria relative abundance. Notably, the Akkermansia relative abundance was highest on day 7 of lactation. Spearman analysis showed a positive correlation between plasma triglyceride and cholinesterase levels and Akkermansia and Streptococcus relative abundances. Moreover, Oscillospira and Desulfovibrio relative abundances were also positively correlated with plasma FSH, LH, and E2 levels, as well as PRL and LH with Bacteroides. Collectively, plasma reproductive hormones, biochemical parameters, and fecal microbiota composition and metabolite levels could alter along with pregnancy and lactation, which might contribute to the growth and development demands of fetuses and newborns.


Assuntos
Fezes/microbiologia , Lactação , Microbiota , Akkermansia , Albuminas/biossíntese , Animais , Bacteroides , Proteínas Sanguíneas/análise , Clostridiales , Desulfovibrio , Estrogênios/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Gravidez , Prenhez , Progesterona/sangue , Prolactina/sangue , Proteobactérias , Spirochaetales , Streptococcus , Suínos , Porco Miniatura , Verrucomicrobia
8.
J Anim Sci Biotechnol ; 11: 86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832077

RESUMO

BACKGROUND: The interaction of the gut microbiota with key metabolic and physiological processes may be associated with poor growth outcomes in animals born with intrauterine growth restriction (IUGR). RESULTS: Growth performance, plasma hormone concentrations, and intestinal microbiota composition were analyzed in IUGR pigs and in normal birth weight (NBW) pigs when the NBW pigs reached 25, 50, and 100 kg of body weight (BW). Compared to NBW pigs, IUGR pigs had lower initial, weaned, and final BW, and lower average daily gain and average daily feed intake in all the considered time points. In the 25 kg BW group, IUGR pigs had higher concentrations of plasma ghrelin and pancreatic polypeptide (PP), but lower insulin concentration than NBW pigs, while the situation was reversed in the 50 kg BW group. As compared to NBW pigs, IUGR pigs had higher microbial alpha diversity in the jejunum and ileum; in the 50 and 100 kg BW groups, IUGR pigs had higher Firmicutes abundance but lower Proteobacteria abundance in the jejunum, and lower Lactobacillus abundance in the jejunum and ileum; in the 25 kg BW group, IUGR pigs showed higher unclassified Ruminococcaceae abundance in the ileum; and in 25 and 50 kg BW groups, IUGR pigs showed lower Ochrobactrum abundance in the jejunum. Spearman's correlation revealed that Lactobacillus was negatively correlated with growth performance, while unclassified Ruminococcaceae was positively correlated. Predictive metagenomic analysis detected significantly different expression of genes in the intestinal microbiota between IUGR and NBW pigs, suggesting different metabolic capabilities between the two groups. CONCLUSIONS: Growing-finishing IUGR pigs showed lower growth performance, higher microbial alpha diversity, and differences in plasma hormone concentrations compared to NBW pigs. Alterations in the abundance of Firmicutes, Proteobacteria, Ruminococcaceae, Lactobacillus, and Ochrobactrum in the small intestine may be associated with IUGR, and may therefore serve as a future target for gut microbiota intervention in growing-finishing IUGR pigs.

9.
PLoS One ; 13(7): e0199939, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30005070

RESUMO

Low birth weight may negatively affect energy storage and nutrient metabolism, and impair fetal growth and development. We analyzed effects of body weight (BW) and gestational period on nutrient composition in fetal Huanjiang mini-pigs. Fetuses with the lowest BW (LBW), middle BW (MBW), and highest BW (HBW) were collected at days 45, 75, and 110 of gestation. Crude protein (CP), crude fat, amino acid (AA), and fatty acid (FA) concentrations were determined. The BW gain, carcass weight, fat percentage, and uterus weight of sows increased as gestation progressed, as did litter weight, average individual fetal weight, fetal body weight, and dry matter (DM). The concentrations of Ala, Arg, crude fat, Gly, Pro, Tyr, C14:0, C16:0, C16:1, C18:1n9c, C18:2n6c, C18:3n3, C18:3n6, C20:0, C20:3n6, saturated FA (SFA), and monounsaturated FA (MUFA) increased significantly as gestation progressed. The percentage of skeleton, and the ratio of the liver, lung, and stomach to BW decreased as gestation progressed. There were also significant reductions in the concentrations of CP, Asp, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr, essential AA (EAA), acidic AA, C17:0, C20:4n6, C22:6n3, unsaturated FA (UFA), polyunsaturated FA (PUFA), n-3PUFA, n-6PUFA as gestation progressed, and reductions in EAA/total AA (TAA), PUFA/SFA, and n-3/n-6 PUFA. The LBW fetuses exhibited the lowest BW and crude fat, C14:0, C16:1, C17:0, C18:2n6c, and MUFA concentrations at days 75 and 110 of gestation. They also exhibited lower Tyr concentration at day 45 of gestation and lower Glu concentration at day 75 of gestation than HBW fetuses. These findings suggest that LBW fetuses exhibit lower amounts of crude fat and several FAs during mid-gestation and late-gestation, which may in turn affect adaptability, growth, and development.


Assuntos
Peso Corporal , Feto/metabolismo , Nutrientes/química , Porco Miniatura/embriologia , Ração Animal/análise , Animais , Composição Corporal , Ácidos Graxos/análise , Feminino , Feto/fisiologia , Proteínas de Carne/análise , Gravidez , Reprodução , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA