Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Brain Res Bull ; 212: 110951, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642899

RESUMO

Central fatigue is a common pathological state characterized by psychological loss of drive, lack of appetite, drowsiness, and decreased psychic alertness. The mechanism underlying central fatigue is still unclear, and there is no widely accepted successful animal model that fully represents human characteristics. We aimed to construct a more clinically relevant and comprehensive animal model of central fatigue. In this study, we utilized the Modified Multiple Platform Method (MMPM) combined with alternate-day fasting (ADF) to create the animal model. The model group rats are placed on a stationary water environment platform for sleep deprivation at a fixed time each day, and they were subjected to ADF treatment. On non-fasting days, the rats were allowed unrestricted access to food. This process was sustained over a period of 21 days. We evaluated the model using behavioral assessments such as open field test, elevated plus maze test, tail suspension test, Morris water maze test, grip strength test, and forced swimming test, as well as serum biochemical laboratory indices. Additionally, we conducted pathological observations of the hippocampus and quadriceps muscle tissues, transmission electron microscope observation of mitochondrial ultrastructure, and assessment of mitochondrial energy metabolism and oxidative stress-related markers. The results revealed that the model rats displayed emotional anomalies resembling symptoms of depression and anxiety, decreased exploratory behavior, decline in learning and memory function, and signs of skeletal muscle fatigue, successfully replicating human features of negative emotions, cognitive decline, and physical fatigue. Pathological damage and mitochondrial ultrastructural alterations were observed in the hippocampus and quadriceps muscle tissues, accompanied by abnormal mitochondrial energy metabolism and oxidative stress in the form of decreased ATP and increased ROS levels. In conclusion, our ADF+MMPM model comprehensively replicated the features of human central fatigue and is a promising platform for preclinical research. Furthermore, the pivotal role of mitochondrial energy metabolism and oxidative stress damage in the occurrence of central fatigue in the hippocampus and skeletal muscle tissues was corroborated.


Assuntos
Modelos Animais de Doenças , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Estresse Oxidativo/fisiologia , Hipocampo/metabolismo , Humanos , Fadiga/fisiopatologia , Privação do Sono , Mitocôndrias/metabolismo , Síndrome de Fadiga Crônica/fisiopatologia , Jejum/fisiologia , Músculo Esquelético , Aprendizagem em Labirinto/fisiologia
2.
Mar Pollut Bull ; 201: 116263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531208

RESUMO

Seasonal variations of environmental parameters usually lead to considerable changes in microbial communities. Nevertheless, the specific response patterns of these communities in coastal areas subjected to different levels of contamination remain unclear. Our results revealed notable fluctuations in the bacterioplankton community both seasonally and spatially, with seasonal variations being particularly significant. The diversity and composition of bacterioplankton communities in the estuaries varied significantly across seasons and between seas. Some bacterial phyla that were highly abundant in the dry season (e.g., Patescibacteria and Epsilonbacteraeota) were almost absent in the wet season. Furthermore, the network analysis revealed that the bacterioplankton networks were more complex during the wet season than in the dry season. In the wet season, the estuarine bacterioplankton network in the Yellow Sea region was more complex and stable, while the opposite was true in the dry season. According to the neutral community model, stochastic processes played a more significant role in the formation of bacterioplankton communities during the wet season than during the dry season. Estuarine bacterioplankton communities in the Yellow Sea region were more affected by stochastic processes compared to those in the Bohai Sea. In summary, in the estuaries of two differently contaminated coastal areas, the seasonal increase in nutrient levels enhanced the deterministic processes and network complexity of the bacterioplankton communities.


Assuntos
Estuários , Microbiota , Organismos Aquáticos , Bactérias , Estações do Ano , Ecossistema , China
3.
Ageing Res Rev ; 95: 102241, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387516

RESUMO

Arthritis has become the most common joint disease globally. Current attention has shifted towards preventing the disease and exploring pharmaceutical and surgical treatments for early-stage arthritis. M2 macrophages are known for their anti-inflammatory properties and their ability to support cartilage repair, offering relief from arthritis. Whereas, it remains a great challenge to promote the beneficial secretion of M2 macrophages to prevent the progression of arthritis. Therefore, it is warranted to investigate new strategies that could use the functions of M2 macrophages and enhance its therapeutic effects. This review aims to explore the macrophage cell membrane-coated biomimetic nanovesicles for targeted treatment of arthritis such as osteoarthritis (OA), rheumatoid arthritis (RA), and gouty arthritis (GA). Cell membrane-camouflaged biomimetic nanovesicle has attracted increasing attention, which successfully combine the advantages and properties of both cell membrane and delivered drug. We discuss the roles of macrophages in the pathophysiology and therapeutic targets of arthritis. Then, the common preparation strategies of macrophage membrane-coated nanovesicles are concluded. Moreover, we investigate the applications of macrophage cell membrane-camouflaged nanovesicles for arthritis, such as OA, RA, and GA. Taken together, macrophage cell membrane-camouflaged nanovesicles hold the tremendous prospect for biomedical applications in the targeted treatment of arthritis.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Biomimética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Macrófagos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
5.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257283

RESUMO

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Assuntos
Microbioma Gastrointestinal , Solanum tuberosum , Humanos , Animais , Camundongos , Amido Resistente , Dieta Hiperlipídica/efeitos adversos , Glicemia , RNA Ribossômico 16S , Amido/farmacologia , Obesidade/etiologia
6.
Small Methods ; : e2301326, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040834

RESUMO

Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.

7.
J Nanobiotechnology ; 21(1): 358, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789401

RESUMO

Wound healing is one of the major global health concerns in diabetic patients. Overactivation of proinflammatory M1 macrophages could lead to delayed wound healing in diabetes. 4-octyl itaconate (4OI), a derivative of the metabolite itaconate, has aroused growing interest recently on account of its excellent anti-inflammatory properties. Cell membrane coating is widely regarded as a novel biomimetic strategy to deliver drugs and inherit properties derived from source cells for biomedical applications. Herein, we fused induced pluripotent stem cell-derived endothelial cell (iEC) membrane together with M1 type macrophage membrane to construct a hybrid membrane (iEC-M) camouflaged 4OI nanovesicles (4OI@iEC-M). Furthermore, bioinspired nanovesicles 4OI@iEC-M are incorporated into the injectable, multifunctional gelatin methacryloyl hydrogels for diabetic wound repair and regeneration. In our study, bioinspired nanovesicles could achieve dual-targeted deliver of 4OI into both M1 macrophages and endothelial cells, thereby promoting macrophage polarization and protecting endothelial cells. With the synergistically anti-inflammatory and immunoregulative effects, the bioinspired nanovesicles-loaded hydrogels could facilitate neovascularization and exhibit superior diabetic wound repair and regeneration. Taken together, this study might provide a novel strategy to facilitate diabetic wound healing, thereby reducing limb amputation and mortality of diabetes.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/farmacologia , Células Endoteliais , Cicatrização , Macrófagos , Anti-Inflamatórios/farmacologia
8.
Inflamm Regen ; 43(1): 33, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391780

RESUMO

Stem cell-based therapy is widely accepted to be a promising strategy in tissue regenerative medicine. Nevertheless, there are several obstacles to applying stem cells in skin regeneration and wound healing, which includes determining the optimum source, the processing and administration methods of stem cells, and the survival and functions of stem cells in wound sites. Owing to the limitations of applying stem cells directly, this review aims to discuss several stem cell-based drug delivery strategies in skin regeneration and wound healing and their potential clinical applications. We introduced diverse types of stem cells and their roles in wound repair. Moreover, the stem cell-based drug delivery systems including stem cell membrane-coated nanoparticles, stem cell-derived extracellular vesicles, stem cell as drug carriers, scaffold-free stem cell sheets, and stem cell-laden scaffolds were further investigated in the field of skin regeneration and wound healing. More importantly, stem cell membrane-coating nanotechnology confers great advantages compared to other drug delivery systems in a broad field of biomedical contexts. Taken together, the stem cell-based drug delivery strategy holds great promise for treating skin regeneration and wound healing.

9.
Genes Dis ; 10(2): 531-541, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37223512

RESUMO

This study aimed to investigate the role of long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) in chemosensitivity of osteosarcoma (OS), and to reveal the possible underlying mechanisms. In this study, we found that the expression of lncRNA MEG3 was significantly lower in OS tissues and cell lines. Furthermore, lncRNA MEG3 overexpression enhanced chemosensitivity of OS by inhibiting cell proliferation, migration, autophagy, and promoting antitumor immunity. LncRNA MEG3 functioned as miR-21-5 sponge to regulate p53 expression in OS. Mechanically, lncRNA MEG3 promoted OS chemosensitivity by regulating antitumor immunity via miR-21-5p/p53 pathway and autophagy. Collectively, this study provided the evidence that lncRNA MEG3 might be a promising therapeutic target for OS chemoresistance.

10.
Drug Discov Today ; 28(4): 103514, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36736580

RESUMO

Small interfering RNA (siRNA) therapeutics for cancer are a focus of increasing research interest. However, the major obstacle to their clinical application is the targeted delivery of siRNA to cancer cells at desirable levels. Cell membrane-coated nanocarriers have the advantage of combining the properties of both cell membranes and nanoparticles (NPs). In this review, we highlight the most common RNAi therapeutics and the extracellular and intracellular barriers to siRNA delivery. Moreover, we discuss clinical applications of different cell membrane-coated nanocarriers for targeted siRNA delivery, including cancer cell membranes (CCMs), platelet membranes, erythrocyte membranes, stem cell membranes, exosome membranes, and hybrid membranes. Taken together, biomimetic cell membrane-coated nanotechnology is a promising strategy for targeted siRNA delivery for cancer treatment.


Assuntos
Exossomos , Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno , Biomimética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos
11.
Bioact Mater ; 23: 69-79, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36406251

RESUMO

Background: Immunosuppressive M2 macrophages in the tumor microenvironment (TME) can mediate the therapeutic resistance of tumors, and seriously affect the clinical efficacy and prognosis of tumor patients. This study aims to develop a novel drug delivery system for dual-targeting tumor and macrophages to inhibit tumor and induce macrophage polarization. Methods: The anti-tumor effects of methyltransferase like 14 (METTL14) were investigated both in vitro and in vivo. The underlying mechanisms of METTL14 regulating macrophages were also explored in this study. We further constructed the cyclic (Arg-Gly-Asp) (cRGD) peptide modified macrophage membrane-coated nanovesicles to co-deliver METTL14 and the TLR4 agonist. Results: We found that METTL14 significantly inhibits the growth of tumor in vitro. METTL14 might downregulate TICAM2 and inhibit the Toll-like receptor 4 (TLR4) pathway of macrophages, meanwhile, the combination of METTL14 and the TLR4 agonist could induce M1 polarization of macrophages. Macrophage membrane-coated nanovesicles are characterized by easy modification, drug loading, and dual-targeting tumor and macrophages, and cRGD modification can further enhance its targeting ability. It showed that the nanovesicles could improve the in vivo stability of METTL14, and dual-target tumor and macrophages to inhibit tumor and induce M1 polarization of macrophages. Conclusions: This study anticipates achieving the dual purposes of tumor inhibition and macrophage polarization, and providing a new therapeutic strategy for tumors.

12.
Adv Healthc Mater ; 12(7): e2202751, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442997

RESUMO

Angiogenesis plays a critical role in diabetic wound healing. However, no effective strategies have been developed to target endothelial cells (ECs) to facilitate diabetic wound healing. Dapagliflozin (DA) as a sodium-glucose linked transporter 2 (SGLT2) inhibitor, may promote neovascularization in diabetic mice via HIF-1α-mediated enhancement of angiogenesis. Here, the bioinspired nanovesicles (NVs) prepared from induced pluripotent stem cells-derived ECs through an extrusion approach are reported, which can function as exosome mimetics to achieve targeted deliver of DA. Abundant membrane C-X-C motif chemokine receptor 4 conferred the EC-targeting ability of these NVs and the endothelial homology facilitated the accumulation in ECs. Furthermore, these DA-loaded induced pluripotent stem cells (iPSC)-EC NVs can facilitate angiogenesis and diabetic wound healing by HIF-1α/VEGFA pathway. Taken together, this study indicated that targeting ECs and regulating angiogenesis may be a promising strategy for the treatment of diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Neovascularização Fisiológica/fisiologia , Cicatrização , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
13.
J Pharm Biomed Anal ; 223: 115107, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36334421

RESUMO

Target protein identification is the key to identification of the mechanisms, side effects, and evaluating druglikeness of small-molecule drugs. The commonly used "labeled" target-characterization methods, including activity-based proteome profiling (ABPP), require the synthesis of a derivatized probe, which are time-consuming and may affect the active drug conformation. Label-free target identification methods do not involve any chemical modification of small-molecules drugs and have received increasing attention in recent years. We reviewed the basic principles, workflow, applications, advantages, and disadvantages of the promising label-free target identification methods, including cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), pulse proteolysis (PP), stability of proteins from rates of oxidation (SPROX), drug affinity responsive target stability (DARTS), limited proteolysis-coupled mass spectrometry (LiP-MS) and solvent-induced protein precipitation (SIP). We also reviewed the prospective applications of these label-free methods for efficient target identification. The approaches based on peptide mapping using high-resolution mass spectrometry (MS) may provide more information regarding comprehensive target proteins and binding sites, which may be useful for target identification in multi-target or complex drug systems.


Assuntos
Proteoma , Proteômica , Proteoma/química , Proteômica/métodos , Espectrometria de Massas/métodos , Proteólise , Sítios de Ligação
14.
Front Endocrinol (Lausanne) ; 13: 1043919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518245

RESUMO

Background: Opportunely screening for diabetes is crucial to reduce its related morbidity, mortality, and socioeconomic burden. Machine learning (ML) has excellent capability to maximize predictive accuracy. We aim to develop ML-augmented models for diabetes screening in community and primary care settings. Methods: 8425 participants were involved from a population-based study in Hubei, China since 2011. The dataset was split into a development set and a testing set. Seven different ML algorithms were compared to generate predictive models. Non-laboratory features were employed in the ML model for community settings, and laboratory test features were further introduced in the ML+lab models for primary care. The area under the receiver operating characteristic curve (AUC), area under the precision-recall curve (auPR), and the average detection costs per participant of these models were compared with their counterparts based on the New China Diabetes Risk Score (NCDRS) currently recommended for diabetes screening. Results: The AUC and auPR of the ML model were 0·697and 0·303 in the testing set, seemingly outperforming those of NCDRS by 10·99% and 64·67%, respectively. The average detection cost of the ML model was 12·81% lower than that of NCDRS with the same sensitivity (0·72). Moreover, the average detection cost of the ML+FPG model is the lowest among the ML+lab models and less than that of the ML model and NCDRS+FPG model. Conclusion: The ML model and the ML+FPG model achieved higher predictive accuracy and lower detection costs than their counterpart based on NCDRS. Thus, the ML-augmented algorithm is potential to be employed for diabetes screening in community and primary care settings.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Humanos , Programas de Rastreamento , Algoritmos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Atenção Primária à Saúde
15.
Front Nutr ; 9: 1072044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570152

RESUMO

Introduction: Insulin signaling via the insulin receptor (IR) may be associated with the amelioration of diet-induced metabolic syndrome. Genistein, a soy isoflavone, has been suggested to play a role in the amelioration of high-fat diet-induced metabolic disorders. Methods: Here, we aimed to explore whether genistein regulates glucose and hepatic lipid by activating the insulin signaling pathway in diet-induced obesity mice. Results: We showed that treatment of western-style diet-fed mice with genistein (60 mg/kg) significantly improved insulin resistance with decreased hyperglycemia and HOMA-IR index. These effects were linked to activating hepatic IRß/PI3K/Akt signaling. Furthermore, genistein suppressed gluconeogenesis and promoted glycogen synthesis to maintain glucose homeostasis by increasing the phosphorylation of hepatic FOXO1/GSK3ß in vivo and in vitro. The reduced level of insulin and upregulation of insulin signaling in genistein-treated mice also lead to an increase in hepatic energy status by inducing energy-sensing AMPK, reducing hepatic SREBP1c/ACC/FAS without affecting ß-oxidation to prevent hepatic lipid accumulation. The protective effect of genistein on hepatic lipid accumulation was also validated in vitro. Besides, genistein had little effect on improvements in intestinal function and liver inflammation. Conclusion: Taken together, our results showed that genistein prevents insulin resistance and hyperglycemia through improvements in hepatic function. This study provides new insight into the mechanisms of genistein mediating glucose metabolism and suggests that genistein may be a promising diet ingredient for preventing prediabetes and hepatic lipid accumulation.

16.
Biomaterials ; 290: 121821, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201949

RESUMO

Hypoxia is a common feature within many types of solid tumors, which is closely associated with limited efficacy for tumor therapies. Moreover, the inability to reach hypoxic tumor cells that are distant from blood vessels results in tumor-targeting and penetrating drug delivery systems in urgent need. Here, glucose oxidase (GOX) and hypoxia-activated prodrug tirapazamine (TPZ) are loaded into photothermal conversion agent polydopamine (PDA) as the glucose/oxygen-exhausting nanoreactor named PGT. We further construct a tumor cell membrane-coated nanovesicle for the targeted delivery of PGT. This biomimetic nanovesicle exhibits significantly improved tumor-targeting and tumor-penetrating abilities. After internalization by the tumor cells, the loaded drug is quickly released in response to near-infrared (NIR) laser. The PGT nanoreactor can exhaust glucose and oxygen, and further enhance hypoxia within tumor, which efficiently inhibits hypoxic tumor by combining starvation therapy and hypoxia-activated chemotherapy. Mechanically, it is revealed that the nanoreactor significantly increases hypoxia level and downregulates the expression of hypoxia-inhibitory factor-1α (HIF-1α), thereby promoting T cell activation and macrophage polarization to remodel tumor immunosuppressive microenvironment. Therefore, this tumor microenvironment-regulable nanoreactor with sustainable and cascade targeted starvation-chemotherapy provides a novel insight into the treatment of hypoxic tumor.


Assuntos
Nanopartículas , Neoplasias , Humanos , Biomimética , Oxigênio/uso terapêutico , Microambiente Tumoral , Glucose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Hipóxia , Membrana Celular/metabolismo , Nanotecnologia , Linhagem Celular Tumoral
17.
Theranostics ; 12(13): 5877-5887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966586

RESUMO

Rationale: Osteosarcoma (OS) is the most common primary bone tumor with a poor prognosis, but the detailed mechanism is still unclear. A comprehensive investigation of tumor microenvironment (TME) of OS might help find effective anti-tumor strategies. Single-cell transcriptomics is a powerful new tool to explore TME. Therefore, this study is designed to investigate the TME and gene expression pattern of primary and recurrent OS at the single-cell level. Methods: The single-cell RNA sequencing and bioinformatic analysis were conducted to investigate the cellular constitution of primary, recurrent, and lung metastatic OS lesions according to the datasets of GSE152048 and GSE162454. TIMER database was used to investigate the role of LOX in the prognosis of sarcoma. The functions of related cells and markers were further confirmed by in vitro and in vivo experiments. Results: Cancer associated fibroblasts (CAFs) were found with a higher infiltrating level in recurrent OS, and were enriched in the epithelial-mesenchymal transition (EMT) pathway. CAFs showed remarkably increased expression of LOX, which might lead to EMT and poor prognosis of OS. Mechanically, LOX regulated the function of CAFs and macrophage polarization to remodel the tumor immune microenvironment. Moreover, LOX inhibitor could inhibit migration and promote apoptosis of OS both in vitro and in vivo. Conclusions: This study revealed the heterogeneity of recurrent OS and highlighted an innovative mechanism that CAFs regulate EMT of OS via LOX. Targeting LOX of CAFs showed promising efficacy in remodeling TME and treating recurrent OS.


Assuntos
Neoplasias Ósseas , Fibroblastos Associados a Câncer , Osteossarcoma , Neoplasias Ósseas/patologia , Fibroblastos Associados a Câncer/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Osteossarcoma/patologia , Transcriptoma , Microambiente Tumoral
18.
Mater Today Bio ; 16: 100377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35967738

RESUMO

Cell membrane-coated nanoparticles (NPs) have attracted growing attention in the field of targeted delivery strategies, which successfully combine the advantages and properties of both cell membranes and synthetic NPs. Stem cell-based delivery systems have the innate targeting capability to tumor tissues, but inappropriate stem cells might promote tumor growth after being injected into the body. Accordingly, it is urgent to explore novel drug delivery systems that might combine the advantages of stem cells and eliminate the possible risks. This review aimed to investigate the stem cell membrane-camouflaged targeted delivery system in tumors. We discussed the underlying mechanisms of stem cell homing to target tumors. Then, the common membrane modification methods well as preparation methods of stem cell membrane coated NPs were concluded. NPs coating the stem cell membranes could obtain the tumor targeting ability, enhanced biocompatibility, and effective drug loading. Furthermore, we investigated the potential clinical applications of mesenchymal stem cells (MSCs) and induced pluripotent stem (iPS) cells membrane-camouflaged targeted delivery systems for anti-tumor therapies, such as chemotherapy, photodynamic therapy, magnetic hyperthermia therapy and imaging, CRISPR-Cas9 gene therapy, and synergistic therapy. Taken together, stem cell membrane-coated NPs hold the tremendous prospect for biomedical applications in tumor therapy.

19.
Biopharm Drug Dispos ; 43(2): 76-85, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220592

RESUMO

Tacrolimus is widely used in organ transplantation to prevent rejection. However, the narrow therapeutic window and the large inter-and intra-individual variability in the pharmacokinetics (PK) of tacrolimus make it difficult for individualization of dosing. This study aimed at developing a population pharmacokinetic model for estimating the oral clearance of tacrolimus in Chinese liver transplant patients, and identifying factors that contribute to the PK variability of tacrolimus. Data of 151 liver transplant patients who received tacrolimus were analyzed in this study. The population PK model was analyzed and the covariates including population demographic and biochemical characteristics, drug combination, and genetic polymorphism were explored using non-linear mixed-effects modeling approach. A single-compartment population PK model was developed, and the final model was CL/F = (14.6-2.38 × cytochrome P450 (CYP) 3A5-3.72 × WZC+1.04 × (POD/9)+2.48 × COR) × Exp(ηi ), where CYP3A5 was 1 for CYP3A5*3/*3, Wuzhi Capsule (WZC) was 1 when patients took tacrolimus combined with WZC, otherwise it was 0, corticosteroids (COR) was 1 when patients take tacrolimus combined with COR, otherwise, it was 0, POD was the post-operative day. Visual inspection and bootstrap indicated that the final model was stable and robust. In this study, we developed the first tacrolimus population PK model in Chinese adult liver transplant patients. We first determined the influence of WZC on tacrolimus in these people, which could provide useful PK information for the drug combination of tacrolimus and WZC. We also revealed the influence of genetic polymorphism of CYP3A5, POD, and a combination of COR on tacrolimus PK. Therefore, these significant factors should be taken into consideration in optimizing dosage regimens.


Assuntos
Transplante de Fígado , Tacrolimo , Adulto , China , Citocromo P-450 CYP3A/genética , Genótipo , Humanos , Imunossupressores/farmacocinética , Modelos Biológicos , Tacrolimo/farmacocinética
20.
Mol Ther Nucleic Acids ; 27: 947-955, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35211355

RESUMO

N6-methyladenosine (m6A), as the most common RNA modification, plays a vital role in the development of cancers. Circular RNAs (circRNAs) are a class of single-stranded covalently closed RNA molecules. Recently, m6A modification has been identified as performing biological functions for regulating circRNAs. Increasing evidence also shows that circRNAs are involved in cancer progression by targeting m6A regulators. In this review, we describe the functional crosstalk between m6A and circRNAs, and illustrate their roles in cancer development. m6A methylation mediates the biogenesis, stability, and cytoplasmic export of circRNAs in different cancer types. Moreover, circRNAs regulate the expression of m6A regulators, participate in the degradation of m6A regulators, and regulate the m6A modification of target mRNAs. Finally, we discuss the potential applications and future research directions of m6A modification and circRNAs in cancer. Further understanding of the biological roles of m6A and circRNAs will provide new insight into the diagnosis and treatment of cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA