Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
ACS Nano ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045619

RESUMO

Despite the immense potential of Dual Single-Atom Compounds (DSACs), the challenges in their synthesis process, including complexity, stability, purity, and scalability, remain primary concerns in current research. Here, we present a general strategy, termed "Entropy-Engineered Middle-In Synthesis of Dual Single-Atom Compounds" (EEMIS-DSAC), which is meticulously crafted to produce a diverse range of DSACs, effectively addressing the aforementioned issues. Our strategy integrates the advantages of both bottom-up and top-down paradigms, proposing an insight into optimizing the catalyst structure. The as-fabricated DSACs exhibited excellent activity and stability in the nitrate reduction reaction (NO3RR). In a significant advancement, our prototypical CuNi DSACs demonstrated outstanding performance under conditions reminiscent of industrial wastewater. Specifically, under a NO3- concentration of 2000 ppm, it yielded a Faradaic efficiency (FE) for NH3 of 96.97%, coupled with a mass productivity of 131.47 mg h-1 mg-1 and an area productivity of 10.06 mg h-1 cm-2. Impressively, even under a heightened NO3- concentration of 0.5 M, the FE for NH3 peaked at 90.61%, with a mass productivity reaching 1024.50 mg h-1 mg-1 and an area productivity of 78.41 mg h-1 cm-2. This work underpins the potential of the EEMIS-DSAC approach, signaling a frontier for high-performing DSACs.

2.
Chempluschem ; : e202400069, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955991

RESUMO

Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.

3.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884407

RESUMO

Chiral perovskite materials are being extensively studied as one of the most promising candidates for circularly polarized luminescence (CPL)-related applications. Balancing chirality and photoluminescence (PL) properties is of great importance for enhancing the value of the dissymmetry factor (glum), and a higher glum value indicates better CPL. Chiral perovskite/quantum dot (QD) composites emerge as an effective strategy for overcoming the dilemma that achieving strong chirality and PL in chiral perovskite while at the same time achieving high glum in this composite is very crucial. Here, we choose diphenyl sulfoxide (DPSO) as an additive in the precursor solution of chiral perovskite to regulate the lattice distortion. How structural variation affects the chiral optoelectronic properties of the chiral perovskite has been further investigated. We find that chiral perovskite/CdSe-ZnS QD composites with strong CPL have been achieved, and the calculated maximum |glum| of the composites increased over one order of magnitude after solvent-additive modulation (1.55 × 10-3 for R-DMF/QDs, 1.58 × 10-2 for R-NMP-DPSO/QDs, -2.63 × 10-3 for S-DMF/QDs, and -2.65 × 10-2 for S-NMP-DPSO/QDs), even at room temperature. Our findings suggest that solvent-additive modulation can effectively regulate the lattice distortion of chiral perovskite, enhancing the value of glum for chiral perovskite/CdSe-ZnS QD composites.

4.
J Environ Manage ; 365: 121474, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936022

RESUMO

In the current global context, there is a pressing need to curtail greenhouse gas emissions, making the utilization of a coal and zero-carbon energy blend an imperative strategy for reducing carbon emissions from coal-fired power generation. The planar flame burner serves as a tool to simulate the temperature and atmospheric conditions within the reburning zone, facilitating extensive examination of the physical and chemical structural alterations, as well as the nitrogen oxide reduction potential, during NH3/CH4 activation for reburning pulverized coal. Experimental results underscore that blending high-activity fuels optimizes the combustion performance of coal char. Through the addition of NH3 and CH4, the NO reduction capability of coal char is bolstered by approximately 0.67 times compared to sole reliance on recirculating flue gas transport. Furthermore, NH3 introduction facilitates the conversion of C]O double bonds into C-O single bonds, rendering them more amenable to reduction by NO. While the joint influence of NH3 and CH4 does not significantly impact char particle size, it does foster the evolution of N-Q to N-5 and N-6 on the char surface. Furthermore, there was a significant increase in the BET-specific surface area, which rose by 50%. Additionally, the total pore volume increased by approximately 21.43%. The comprehensive understanding of NH3 and CH4 modified pulverized coal reburning technology holds significant promise for optimizing power plant operations and mitigating carbon dioxide and nitrogen oxide emissions.


Assuntos
Amônia , Carvão Mineral , Metano , Metano/química , Amônia/química , Centrais Elétricas
5.
Chem Sci ; 15(11): 3988-3995, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487237

RESUMO

Na3Zr2Si2PO12 has been proven to be a promising electrolyte for solid-state sodium batteries. However, its poor conductivity prevents application, caused by the large ionic resistance created by the grain boundary. Herein, we propose an additional glass phase (Na-Ga-Si-P-O phase) to connect the grain boundary via Ga ion introduction, resulting in enhanced sodium-ion conduction and electrochemical performance. The optimized Na3Zr2Si2PO12-0.15Ga electrolyte exhibits Na+ conductivity of 1.65 mS cm-1 at room temperature and a low activation energy of 0.16 eV, with 20% newly formed glass phase enclosing the grain boundary. Temperature-dependent NMR line shapes and spin-lattice relaxation were used to estimate the Na self-diffusion and Na ion hopping. The dense glass-ceramic electrolyte design strategy and the structure-dynamics-property correlation from NMR, can be extended to the optimization of other materials.

6.
Front Pharmacol ; 15: 1303732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420199

RESUMO

Background and objective: Osteosarcoma is a common primary malignant tumor of bone, and doxorubicin is one of the most widely used therapeutic drugs. While the problem of doxorubicin resistance limits the long-term treatment benefits in osteosarcoma patients. The role of miRNAs and their target genes in osteosarcoma have become increasingly prominent. Currently, there is no report on miR-506-3p reversing doxorubicin resistance by targeting STAT3 in osteosarcoma. The purpose of this study was to investigate the molecular mechanism that overexpression of miR-506-3p reverses doxorubicin resistance in drug-resistant osteosarcoma cells. Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were constructed by intermittent stepwise increasing stoichiometry. The target genes of miR-506-3p were predicted by bioinformatics approach and the targeting relationship between miR-506-3p and STAT3 was detected using dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p overexpression and STAT3 silencing respectively. Then Western blot and RT-qPCR were used to detect the protein and mRNA expression levels of JAK2/STAT3 signaling pathway, drug-resistant and apoptotic associated molecules. The migration and invasion were assessed by cell scratch assay and transwell assay. The cell proliferative viability and apoptosis were investigated by CCK8 assay and flow cytometry assay. Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold resistance. MiR-506-3p is directly bound to the 3'-UTR of STAT3 mRNA. Compared with U-2OS cells, the mRNA expression of miR-506-3p was reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax expression. It also inhibited the proliferation, migration and invasion of U-2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing experiments in the above indicators were consistent with that of miR-506-3p overexpression. Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/STAT3 pathway and the malignant biological behaviors, then further reverse doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a new molecular mechanism for reversing the resistance of osteosarcoma to doxorubicin chemotherapy and provided theoretical support for solving the clinical problems of doxorubicin resistance in osteosarcoma.

7.
Small ; 20(14): e2307809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988684

RESUMO

Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.

8.
Adv Mater ; 36(5): e2305604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789724

RESUMO

Chiral-induced spin selectivity (CISS) effect provides innovative approach to spintronics and quantum-based devices for chiral materials. Different from the conventional ferromagnetic devices, the application of CISS effect is potential to operate under room temperature and zero applied magnetic field. Low dimensional chiral perovskites by introducing chiral amines are beginning to show significant CISS effect for spin injection, but research on chiral perovskites is still in its infancy, especially on spin-light emitting diode (spin-LED) construction. Here, the spin-QLEDs enabled by 2D chiral perovskites as CISS layer for spin-dependent carrier injection and CdSe/ZnS quantum dots (QDs) as light emitting layer are reported. The regulation pattern of the chirality and thickness of chiral perovskites, which affects the circularly polarized electroluminescence (CP-EL) emission of spin-QLED, is discovered. Notably, the spin injection polarization of 2D chiral perovskites is higher than 80% and the CP-EL asymmetric factor (gCP-EL ) achieves up to 1.6 × 10-2 . Consequently, this work opens up a new and effective approach for high-performance spin-LEDs.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123708, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042124

RESUMO

Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD âˆ¼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.


Assuntos
Hidrolases de Éster Carboxílico , Corantes Fluorescentes , Humanos , Camundongos , Animais , Acetilcolinesterase , Butirilcolinesterase , Células HeLa , Imagem Óptica/métodos , Combinação de Medicamentos
10.
ACS Mater Au ; 3(5): 492-500, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089101

RESUMO

Donor-doped melilite materials with interstitial oxygen defects in the structure are good oxide ion conductors with negligible electronic conduction and show great potential in the ceramic electrolyte of intermediate-temperature solid oxide fuel cells (IT-SOFC). However, the parent melilite-structured materials with stoichiometric oxygen are usually insulators. Herein, we reported high and pure oxide ion conduction in the parent K2ZnV2O7 material with a melilite-related structure, e.g., ∼1.14 × 10-3 S/cm at 600 °C, which is comparable to that of the state-of-the-art yttrial-stabilized ZrO2 applied in practical fuel cells. Neutron diffraction data revealed the interesting thermally induced formation of oxygen vacancies at elevated temperatures, which triggered the transformation of the material from electronically conducting to purely and highly oxide ion-conducting. The VO4 tetrahedron with non-bridging terminal oxygen in K2ZnV2O7 was proved to be the key structural factor for transporting oxygen vacancies. The molecular dynamic simulation based on the interatomic potential approach revealed that long-range oxide ion diffusion was achieved by breaking and re-forming the 5-fold MO4 (M = Zn and V) tetrahedral rings. These findings enriched our knowledge of melilite and melilite-related materials, and creating oxygen vacancies in a melilite-related material may be a new strategy for developing novel oxide ion conductors.

11.
Stat Med ; 42(30): 5616-5629, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37806971

RESUMO

A wealth of gene expression data generated by high-throughput techniques provides exciting opportunities for studying gene-gene interactions systematically. Gene-gene interactions in a biological system are tightly regulated and are often highly dynamic. The interactions can change flexibly under various internal cellular signals or external stimuli. Previous studies have developed statistical methods to examine these dynamic changes in gene-gene interactions. However, due to the massive number of possible gene combinations that need to be considered in a typical genomic dataset, intensive computation is a common challenge for exploring gene-gene interactions. On the other hand, oftentimes only a small proportion of gene combinations exhibit dynamic co-expression changes. To solve this problem, we propose Bayesian variable selection approaches based on spike-and-slab priors. The proposed algorithms reduce the computational intensity by focusing on identifying subsets of promising gene combinations in the search space. We also adopt a Bayesian multiple hypothesis testing procedure to identify strong dynamic gene co-expression changes. Simulation studies are performed to compare the proposed approaches with existing exhaustive search heuristics. We demonstrate the implementation of our proposed approach to study the association between gene co-expression patterns and overall survival using the RNA-sequencing dataset from The Cancer Genome Atlas breast cancer BRCA-US project.


Assuntos
Algoritmos , Genômica , Humanos , Teorema de Bayes , Simulação por Computador , Heurística
12.
Transl Cancer Res ; 12(8): 1992-2007, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37701108

RESUMO

Background: High-grade bladder cancer (HGBC) has a higher malignant potential, recurrence and progression rate compared to low-grade phenotype. Its early symptoms are often vague, making non-invasive diagnosis using urinary biomarkers a promising approach. Methods: The gene expression data from urine samples of patients with HGBC was extracted from the GSE68020 dataset. The clinical information and gene expression data in tumor tissues of HGBC patients were obtained from The Cancer Genome Atlas (TCGA) database. Multivariate Cox analysis was used to predict the optimal risk model. The protein-protein interaction (PPI) analysis was performed via the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized using Cytoscape. Overall survival (OS) was evaluated in the Gene Expression Profiling Interactive Analysis (GEPIA) online platform. Competing endogenous RNA (ceRNA) network was also visualized using Cytoscape. The expression levels of specific genes were assessed through quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Moreover, co-expressed genes and potential biological functions related to specific genes were explored based on the Cancer Cell Line Encyclopedia (CCLE) database. Results: A total of 560 differentially expressed genes (DEGs) were identified when comparing the urine sediment samples from HGBC patients with the benign ones. Using these urinary DEGs and the clinical information of HGBC patients, we developed an optimal risk model consisting of eight genes to predict the patient outcome. By integrating the node degree values in the PPI network with the expression changes in both urine and tissue samples, eighteen hub genes were selected out. Among them, DKC1 and SNRPG had the most prominent comprehensive values, and EFTUD2, LOR and EBNA1BP2 were relevant to a worse OS in bladder cancer patients. The ceRNA network of hub genes indicated that DKC1 may be directly regulated by miR-150 in HGBC. The upregulation of both SNRPG and DKC1 were detected in HGBC cells, which were also observed in various tumor tissues and malignant cell lines, displaying high correlations with other hub genes. Conclusions: Our study may provide theoretical basis for the development of effective non-invasive detection and treatment strategies, and further research is necessary to explore the clinical applications of these findings.

13.
Chemistry ; 29(62): e202302201, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565784

RESUMO

Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.

14.
Heliyon ; 9(8): e18607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576192

RESUMO

Aimed at the preparation of bimetallic composites by using a liquid-liquid compound casting method with a sound interface, this study focused on the interface evolution with an increase in the pouring time interval. The results revealed that the melt mixing occurred when the pouring interval was 3 s. The transition zone appeared at the interface when the pouring interval was 10 s, and a good metallurgical bond was obtained. When the pouring interval was 20 s, a discontinuous oxide layer appeared at the interface. The oxide layer gap formed a channel for the transport of the SiC particles.

15.
J Colloid Interface Sci ; 650(Pt A): 701-709, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441963

RESUMO

Glycerol oxidation reaction can be substituted for oxygen evolution reaction for more efficient hydrogen production due to its lower thermodynamic potential. Herein, a series of NiCo hydroxide nanosheets containing abundant Ni3+ species and surface ligands were synthesized by in-situ structural transformation of bimetallic organic frameworks in alkaline media for efficient glycerol oxidation reaction. It is found that the incorporation of Co ions increases the content of the Ni3+ species, and that the Ni/Co ratio of 1.0 lead to the optimal catalytic performance. The oxalate-modified nickel-cobalt hydroxide with the optimized Ni/Co ratio can deliver a current density of 10 mA cm-2 at 1.26 V vs. RHE (reversible hydrogen electrode), and reaches its maximum selectivity and Faradaic efficiency at 1.30 V vs. RHE. A high selectivity of 82.9% and a Faradaic efficiency of 91.0% are achieved. The high catalytic activity can be mainly attributed to the abundant Ni3+ species and surface carboxyl groups.

16.
Front Plant Sci ; 14: 1138498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265642

RESUMO

Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.

17.
Angew Chem Int Ed Engl ; 62(27): e202304412, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140201

RESUMO

Dual-atom catalysts (DAC) are deemed as promising electrocatalysts due to the abundant active sites and adjustable electronic structure, but the fabrication of well-defined DAC is still full of challenges. Herein, bonded Fe dual-atom catalysts (Fe2 DAC) with Fe2 N6 C8 O2 configuration were developed through one-step carbonization of a preorganized covalent organic framework with bimetallic Fe chelation sites (Fe2 COF). The transition from Fe2 COF to Fe2 DAC involved the dissociation of the nanoparticles and the capture of atoms by carbon defects. Benefitting from the optimized d-band center and enhanced adsorption of OOH* intermediates, Fe2 DAC exhibited outstanding oxygen reduction activity with a half-wave potential of 0.898 V vs. RHE. This work will guide more fabrication of dual-atom and even cluster catalysts from preorganized COF in the future.

18.
Pacing Clin Electrophysiol ; 46(5): 425-431, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959770

RESUMO

OBJECTIVE: In this study, the efficacy and safety of salvianolate were compared with enoxaparin in the prevention of perioperative deep vein thrombosis in gastrointestinal surgery. METHODS: From October 2017 to September 2019, 563 patients who underwent gastrointestinal surgery were collected. Based on the inclusion and exclusion criteria, 119 patients were divided into two groups: enoxaparin group (n = 65) and salvianolate group (n = 54). Comparisons were made regarding the outcomes: prothrombin time (PT), prothrombin activity (PTA), international normalized ratio (INR), activated partial thromboplastin time (APTT), fibrinogen (FIB), thrombin time (TT), D-dimer level (D-D), platelet count (PLT), hematokrit (HCT), and incidence of deep vein thrombosis (DVT). RESULTS: The main outcomes showed no significance between enoxaparin group and salvianolate group (p > .05). The incidence of DVT in salvianolate group was 1.85%, significantly lower than that in enoxaparin group (12.3%) (p < .05). No serious adverse reactions occurred in the two groups during treatment. CONCLUSION: Compared with enoxaparin, salvianolate has an advantage in the prevention of perioperative thrombosis in gastrointestinal surgery with a lower incidence of DVT.


Assuntos
Procedimentos Cirúrgicos do Sistema Digestório , Enoxaparina , Extratos Vegetais , Trombose Venosa , Humanos , Extratos Vegetais/administração & dosagem , Enoxaparina/administração & dosagem , Anticoagulantes/administração & dosagem , Assistência Perioperatória , Trombose Venosa/epidemiologia , Trombose Venosa/prevenção & controle , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Tempo de Protrombina , Incidência , Estudos Retrospectivos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , China/epidemiologia , Resultado do Tratamento
19.
Heliyon ; 9(3): e14450, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950600

RESUMO

Although immunotherapy has revolutionized cancer management, most patients do not derive benefits from it. Aiming to explore an appropriate strategy for immunotherapy efficacy prediction, we collected 6251 patients' transcriptome data from multicohort population and analyzed the data using a machine learning algorithm. In this study, we found that patients from three immune gene clusters had different overall survival when treated with immunotherapy (P < 0.001), and that these clusters had differential states of hypoxia scores and metabolism functions. The immune gene score showed good immunotherapy efficacy prediction (AUC was 0.737 at 20 months), which was well validated. The immune gene score, tumor mutation burden, and long non-coding RNA score were further combined to build a tumor immune microenvironment signature, which correlated more strongly with overall survival (AUC, 0.814 at 20 months) than when using a single variable. Thus, we recommend using the characterization of the tumor immune microenvironment associated with immunotherapy efficacy via a multi-omics analysis of cancer.

20.
Waste Manag ; 161: 203-212, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36893714

RESUMO

In melting municipal solid waste incineration (MSWI) fly ash by cyclone furnace, the deposition characteristics of particles affect the slag flow and the secondary MSWI fly ash formation. In this study, the composition mechanism based on critical viscosity is selected as the particle deposition model to predict the deposition and rebound of particles on the furnace wall. The Riboud model with an accurate viscosity prediction performance is selected, then the particle deposition model is integrated into a commercial computational fluid dynamics (CFD) solver through the user-defined function (UDF) to realize the coupling of particle motion and deposition process. The results show that under the same case, the deposition rate decreases obviously with the increase of MSWI fly ash particle size. And the escape rate reaches a maximum at particle size 120 µm. Controlling the particle size of fly ash particles within 60 µm can effectively reduce the generation of secondary MSWI fly ash. During the forward movement of the fly ash inlet position, the escape of MSWI fly ash particles with large particle sizes has been significantly weakened. This measure not only lowers the post-treatment cost but also dramatically reduces the pretreatment step of MSWI fly ash before the melting and solidification process. In addition, the deposition rate and quality will reach the maximum values, respectively, along with gradually increasing MSWI fly ash input flow. Overall, this study has the guiding significance for reducing the pretreatment steps and post-treatment costs of MSWI fly ash by melting in the cyclone furnace.


Assuntos
Tempestades Ciclônicas , Metais Pesados , Eliminação de Resíduos , Incineração , Cinza de Carvão , Resíduos Sólidos , Metais Pesados/análise , Carbono , Material Particulado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA