RESUMO
The application of non-invasive brain stimulation (NIBS) in non-human primates (NHPs) is critical for advancing understanding of brain networks and developing treatments for neurological diseases. Improving the precision of targeting can significantly enhance the efficacy of these interventions. Here, we introduce a 3D-printed helmet designed to achieve repeatable and precise neuromodulation targeting in awake rhesus monkeys, eliminating the need of head fixation. Imaging studies confirmed that the helmet consistently targets the primary motor cortex (M1) with a margin of error less than 1 mm. Evaluations of stimulation efficacy revealed high resolution and stability. Additionally, physiological evaluations under propofol anesthesia showed that the helmet effectively facilitated the generation of recruitment curves for motor area, confirming successful neuromodulation. Collectively, our findings present a straightforward and effective method for achieving consistent and precise NIBS targeting in awake NHPs, potentially advancing both basic neuroscience research and the development of clinical neuromodulation therapies.
RESUMO
Rationale: Relapse to drug use is a major clinical challenge in the treatment of addictive disorders, including psychostimulant use and may be exacerbated by reduced sensitivity to natural, non-drug reward. Given the relatively limited set of outcomes, and short withdrawal time in rodent studies, we conducted a more detailed assessment of the response to natural rewards in methamphetamine (METH) naive versus exposed monkeys during long-term abstinence. Methods: This study introduced an improved sucrose preference test (iSPT) to assess natural reward seeking and consumption in monkeys with long-term abstinence after methamphetamine (METH) use. The test was administered to sixteen naive monkeys and five METH exposed monkeys that had been abstinent for at least 3 months. Results: METH exposed monkeys showed a lower sucrose preference score in both the iSPT (z = -2.10, p = 0.036) and the sucrose preference test (z = -2.61, p = 0.009). The sucrose preference score was significantly correlated with the latency of the establishment of stable sucrose-preference (r = -0.76, df = 46, p < 0.001) but not with the other variables. Furthermore, water-sucrose switch latency and switch times were significantly negatively correlated (r = -0.50, df = 20, p = 0.02). Conclusion: These results show reductions in natural reward consumption during long-term methamphetamine abstinence.
RESUMO
Background: The femoral artery is the standard route for transarterial chemoembolization (TACE); however, it is negatively associated with the quality of life of patients, and carries an increased risk of deep vein thrombosis in the lower limbs. We employed the distal radial approach to TACE to assess its feasibility and safety. Methods: We conducted a retrospective study at the First Hospital of Jilin University from August 1, 2020 to October 31, 2023. To be eligible for inclusion in the study, the patients had to meet the following main inclusion criteria: (I) have undergone a preoperative imaging (abdominal computed tomography enhancement or magnetic resonance dynamic enhancement) examination, or have a pathologically confirmed diagnosis of primary liver cancer, and a Child-Pugh score of A or B; and (II) have undergone distal radial artery puncture. The primary endpoint of this study was the success rate of distal radial artery puncture. The secondary endpoints were complications and the duration of the puncture. Results: Among the 343 patients with primary liver cancer (of whom 236 were male and 107 were female), a total of 1,315 distal radial artery punctures were attempted. The success rate was remarkably high at 95.13% (1,251/1,315), with only 64 cases requiring an alternative approach due to failed puncture. The average puncture duration was 20±7.43 minutes. No bleeding and hematoma, no arterial dissection and pseudoaneurysm formation were observed on ultrasound, and the radial pulse was palpable in all patients, highlighting the safety of the procedure. Further, no adverse events of vascular occlusion were observed among the 12 patients who received 6 or more punctures, indicating the sustainability of the distal radial artery access under the premise of adequate vascular protection. The development of this technique requires a learning curve of at least 50 cases to break through the learning baseline and be proficient in distal radial artery blind puncture. This may be the reason why many interventional physicians are reluctant to perform this procedure, adapting to the femoral approach with a shorter learning curve. Conclusions: The distal radial artery approach is feasible and safe in hepatic arterial chemoembolization, and should be widely promoted in TACE.
RESUMO
Metal-organic frameworks (MOFs) have been widely considered as ideal platforms for the preparation of biomimetic catalysts, but it remains challenging to fabricate MOF-based enzyme-like catalysts with optimal activity. Here, we leverage the inherent flexibility of MOFs and propose a novel trans-functionalization strategy to construct a carbonic anhydrase (CA) mimic by the structural transformation from ZIF-L to ZIF-8. Theoretical and experimental results reveal that during the structural transformation, the hydroxyl group will preferentially coordinate with the interlayer Zn clusters to form the CA-like active center Zn-N3-OH. Therefore, more accessible active centers are generated on the as-prepared ZIF-8-OH, resulting in substantially enhanced catalytic activity in the hydrolysis of para-nitrophenyl acetate.
RESUMO
Mechanochemistry studies the effect of mechanical force on chemical bonds, bringing opportunities for synthesizing alloys, ceramics, organics, polymers, and biomaterials. A vital issue of applying macro-scale mechanical force to manipulate crystal structures is finding ways to precisely adjust the force directions to break micro-scale target chemical bonds. Inspired by a common technique of driving a wedge into the wood to make wood chopping much easier, a wedging strategy of splitting three-dimensional structured crystalline frameworks and then converting them to nanosheets was proposed, where specific molecules were wedged into crystalline frameworks to drive the directional transmission of mechanical force to break chemical bonds. As a result, various crystalline framework nanosheets including metal-organic framework nanosheets, covalent organic framework nanosheets, and coordination polymer nanosheets were fabricated. This wedging crystal strategy exhibits advantages of operability, flexibility and designability, and furthermore, it is expected to expand mechanochemistry applications in material preparation.
RESUMO
Methamphetamine (MA) is one of the most abused drugs globally, but the mechanism of its addiction remains unclear. Several animal studies have shown that the gut microbiota (GM) influences addictive behaviors, but the pattern of GM changes during addiction in animals of different species remains unclear. The aim of this study was to explore the association between dynamic changes in GM and MA self-administration acquisition among two classical mammals, rhesus monkeys (Macaca mulatta) and rats, MA self-administration models. Male Sprague-Dawley rats and male rhesus monkeys were subjected to classical MA self-administration training, and fecal samples were collected before and after MA self-administration training, respectively. 16S rRNA sequencing was used for GM analyses. We found that GM changes were more pronounced in rats than in rhesus monkeys, as evidenced by more GM taxa producing significant differences before and after MA self-administration training in rats than in monkeys. We also found that the expression of the genus Clostridia_vadinBB60_group significantly decreased after MA self-administration training in both rats and rhesus monkeys. Lactobacillus changes were significantly negatively correlated with total MA uptake in rats (Pearson R = - 0.666, p = 0.035; Spearman R = - 0.721, p = 0.023), whereas its change was also highly negatively correlated with total MA uptake in rhesus monkeys (Pearson R = - 0.882, p = 0.118; Spearman R = - 1.000, p = 0.083), although this was not significant. These findings suggest that MA causes significant alterations in GM in both rhesus monkeys and rats and that the genus Lactobacillus might be a common therapeutic target for MA uptake prevention across the species.
RESUMO
Background: The standard approach for transarterial embolization of uterine fibroids or adenomas is via the femoral artery, but this approach limits the patient's quality of life and increases the risk of deep vein thrombosis in the lower extremities. We applied the distal radial approach technique for the treatment of uterine artery embolization, and aimed to explore the feasibility and safety of uterine artery chemoembolization through the distal radial approach. Methods: We conducted a retrospective study at The First Hospital of Jilin University from January 1, 2021 to November 30, 2023. The main inclusion criteria were: (I) uterine fibroids and adenomyosis were confirmed by preoperative imaging examination; (II) able to accurately palpate the distal radial artery pulse, and the Allen test is negative. Exclusion criteria: patients with distal radial pulses that cannot be palpated, or who are palpable but have radial arteriotomy dialysis, have a tortuous angle on preoperative radial artery ultrasound, which is not conducive to guidewire catheter passage. The primary endpoint of this study was the success rate of distal radial artery puncture. The secondary endpoints included complications and the duration of the puncture. Results: Sixteen patients were enrolled in this study, of which 8 (50%) had uterine fibroids, 5 (31.25%) had uterine adenomas, and 3 (18.75%) had both. The puncture success rate was 93.75% (15/16) and one patient who failed to puncture the distal radial artery was changed to the radial artery approach. The mean time of puncture was 21±8.54 minutes. There were no complications, including bleeding, hematoma, arterial dissection, pseudoaneurysm formation, or distal radial artery occlusion, observed. Conclusions: Uterine artery embolization by the distal radial artery approach is safe and feasible, and should be widely promoted in uterine artery embolization.
RESUMO
Free-space optical (FSO) communication can be subject to various types of distortion and loss as the signal propagates through non-uniform media. In experiment and simulation, we demonstrate that the state of polarization and degree of polarization of light passed though underwater bubbles, causing turbulence, is preserved. Our experimental setup serves as an efficient, low cost alternative approach to long distance atmospheric or underwater testing. We compare our experimental results with those of simulations, in which we model underwater bubbles, and separately, atmospheric turbulence. Our findings suggest potential improvements in polarization based FSO communication schemes.
RESUMO
Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.
Assuntos
Periplaneta , Receptores Odorantes , Atrativos Sexuais , Comportamento Sexual Animal , Animais , Masculino , Atrativos Sexuais/metabolismo , Feminino , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Periplaneta/metabolismo , Periplaneta/fisiologia , Periplaneta/genética , Comportamento Sexual Animal/fisiologia , Antenas de Artrópodes/metabolismo , Antenas de Artrópodes/fisiologia , Comunicação Animal , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Receptores de Feromônios/metabolismo , Receptores de Feromônios/genéticaRESUMO
OBJECTIVE: The present study aims to evaluate the efficacy and effect of localized delivery of drugs in the treatment of high-grade squamous intraepithelial lesion (HSIL) based on a meta-analysis. STUDY DESIGN: Databases including Cochrane Library, PubMed, Embase, Scopus, CNKI, and Wanfang were searched from their inception till August 2022. Randomized controlled trials (RCTs) that compared the efficacy of drugs and surgery in the treatment of HSIL were collected. A meta-analysis was performed using the software of Review Manager (version 5.4.1). RESULTS: Eight RCTs involving 523 patients were included in the meta-analysis. For HSIL, the rate of cervical lesions histological regression was 69.85 % in the surgery group and 59.88 % in the drug group, there was no significant difference between the two groups [OR = 0.45, 95 % CI (0.07, 3.03), P = 0.41]. The histological regression rate of cervical lesions in the placebo group was 37.76 %, and the difference between the drug group and the placebo group was statistically significant [OR = 4.94, 95 % CI (2.65, 9.20), P < 0.00001]. CONCLUSION: A total of four drugs were involved in the eight RCTS included in this study, which were imiquimod, 5-fluorouracil (5-FU), cidofovir and interferon. The results showed that although drug administration was effective in the histological regression of HSIL, the efficacy was less than about 10% of surgical treatment. Considering the recurrence of the disease after surgery and the problems of abortion, premature delivery and premature rupture of membranes after cervical conization in reproductive women, drug therapy can be used as a supplement to surgery or conservative treatment to promote the histological regression of cervical lesions in patients with HSIL.
Assuntos
Lesões Intraepiteliais Escamosas Cervicais , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/cirurgia , Lesões Intraepiteliais Escamosas Cervicais/tratamento farmacológico , Lesões Intraepiteliais Escamosas Cervicais/patologia , Lesões Intraepiteliais Escamosas Cervicais/cirurgia , Administração Tópica , Ensaios Clínicos Controlados Aleatórios como Assunto , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Displasia do Colo do Útero/tratamento farmacológico , Displasia do Colo do Útero/cirurgia , Displasia do Colo do Útero/patologia , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêuticoRESUMO
Background: Brain-derived neurotrophic factor (BDNF) is known to prevent methamphetamine (METH)-induced neurotoxicity and plays a role in various stages of METH addiction. However, there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals. Aims: The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys. Methods: This study measured plasma BDNF levels in three male rhesus monkeys with continuous METH exposure and four male control rhesus monkeys without METH exposure. Changes in plasma BDNF levels were then assessed longitudinally during 40 sessions of METH self-administration in the three monkeys. Results: Repeated METH exposure decreased plasma BDNF levels. Additionally, plasma BDNF decreased with long-term rather than short-term accumulation of METH during METH self-administration. Conclusions: These findings may indicate that the changes in peripheral BDNF may reflect the quantity of accumulative METH intake during a frequent drug use period.
RESUMO
OBJECTIVE: To investigate the feasibility and safety of hepatic artery chemoembolization via the distal transradial access (dTRA). METHODS: The clinical data of 130 patients with primary hepatocellular carcinoma treated in The First Hospital of Jilin University between August 1, 2020 and December 31, 2020, were retrospectively analyzed. Patients were confirmed to have primary hepatocellular carcinoma by preoperative imaging or pathology, with Child-Pugh Grade A or B and persistently palpable distal radial pulses. After a negative Allen test, patients underwent transcatheter arterial chemoembolization (TACE) via dTRA. The puncture success rate, the average number of needles, puncture time, distal radial occlusion and wrist hematoma were used to evaluate the treatment efficacy in the patients. RESULTS: All the punctures were performed using 21G steel needles. 5F sheaths were used for 84 cases, and 4F sheaths for 46 cases. The total was 130 cases. Among the 130 cases, 112 cases (86.2%) were successful in the puncture, 18 cases (13.8%) failed in the puncture. The success rate of the descending aorta selection using an MPA1 catheter (Cordis, Santa Clara, CA, USA) was 96.2% (125/130). In the remaining 5 cases, the selection succeeded after a 5F pigtail catheter was used instead. The success rate of the celiac trunk or superior mesenteric artery selection using an MPA1 catheter was 100%. No bleeding or hematoma occurred after 2-4 hours of compression following distal radial artery puncture, and both distal and proximal radial artery pulses were palpable. No arterial dissection or pseudoaneurysm was found, and there was no distal radial artery occlusion. Fourteen patients underwent 2 sessions of distal radial artery punctures, and no vascular occlusion was found in these patients either. CONCLUSIONS: TACE via the dTRA is feasible and safe for primary hepatocellular carcinoma.
RESUMO
Elevated impulsivity has been frequently reported in individuals with opioid addiction receiving methadone maintenance therapy (MMT), but the underlying neural mechanisms and cognitive subprocesses are not fully understood. We acquired functional magnetic resonance imaging (fMRI) data from 37 subjects with heroin addiction receiving long-term MMT and 33 healthy controls who performed a probabilistic reversal learning task, and measured their resting-state brain glucose using fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET). Subjects receiving MMT exhibited significantly elevated self-reported impulsivity, and computational modeling revealed a marked impulsive decision bias manifested as switching more frequently without available evidence. Moreover, this impulsive decision bias was associated with the dose and duration of methadone use, irrelevant to the duration of heroin use. During the task, the switch-related hypoactivation in the left rostral middle frontal gyrus was correlated with the impulsive decision bias while the function of reward sensitivity was intact in subjects receiving MMT. Using prior brain-wide receptor density data, we found that the highest variance of regional metabolic abnormalities was explained by the spatial distribution of µ-opioid receptors among 10 types of neurotransmitter receptors. Heightened impulsivity in individuals receiving prolonged MMT is manifested as atypical choice bias and noise in decision-making processes, which is further driven by deficits in top-down cognitive control, other than reward sensitivity. Our findings uncover multifaceted mechanisms underlying elevated impulsivity in subjects receiving MMT, which might provide insights for developing complementary therapies to improve retention during MMT.
Assuntos
Dependência de Heroína , Humanos , Dependência de Heroína/tratamento farmacológico , Metadona/uso terapêutico , Heroína/efeitos adversos , Encéfalo/diagnóstico por imagem , Comportamento ImpulsivoRESUMO
As is known, metal-organic frameworks (MOFs) are a versatile class of materials in energy storage applications including supercapacitors. However, the individual kind of metal nodes connected by organic ligands to form a topological structure still limits the potential storage capacity of MOFs. Herein, a bimetal-based Ni-Mn MOF composite is configured with a one-pot hydrothermal method to derive a composite with a synergic effect to maximize the properties. Moreover, reduced graphene oxide (rGO) sheets are added as a conductive network to anchor the MOF-derived composite of Ni-Mn@C/rGO, which is expected to increase the conductivity of the materials system. The resulting composite exhibited a high specific capacitance of 1674 F g-1 at a current density of 0.3 A g-1, suggesting excellent energy storage performance. The composite was then integrated as the cathode in an asymmetrical supercapacitor with a 3D rGO aerogel anode, resulting in energy densities of 24.1 and 17.5 W h kg-1 at power densities of 88.9 and 444.4 W kg-1, respectively. Additionally, the device demonstrated remarkable long-term stability, with 90% capacitance retention after 10â¯000 charge-discharge cycles at 10 A g-1.
RESUMO
Ferroptosis is a novel form of regulated cellular necrosis that plays a critical role in promoting cancer progression and developing drug resistance. The main characteristic of ferroptosis is irondependent lipid peroxidation caused by excess intracellular levels of reactive oxygen species. CUGBP ELAVlike family number 2 (CELF2) is an RNAbinding protein that is downregulated in various types of cancer and is associated with poor patient prognoses. CELF2 can directly bind mRNA to a variety of ferroptosis control factors; however, direct evidence of the regulatory role of CELF2 in ferroptosis is currently limited. The aim of the present review was to summarise the findings of previous studies on CELF2 and its role in regulating cellular redox homeostasis. The present review may provide insight into the possible mechanisms through which CELF2 affects ferroptosis and to provide recommendations for future studies.
Assuntos
Ferroptose , Neoplasias , Humanos , Ferroptose/genética , Apoptose , Ferro , Peroxidação de Lipídeos , Necrose , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas CELF , Proteínas do Tecido NervosoRESUMO
This study sought to examine the role of bile acids in the regulation of glucose and lipid metabolism, intestinal flora, and growth in high-fat diet-fed common carp (Cyprinus carpio L.). Fish (6.34 ± 0.07 g) were fed for 56 days with three different diets, the control diet (CO, 5.4% lipid), high-fat diet (HF, 11% lipid), and high-fat diet with 60 mg/kg bile acids (BAs, 11% lipid). The results showed that high-fat diets resulted in poor growth performance and increased triglyceride (TG) in serum and the liver. The addition of bile acids significantly alleviated the adverse effects of a high-fat diet. The mRNA expression results indicated that bile acids may improve lipid metabolism through the enhancement of the peroxisome proliferator-activated receptor (PPARa). The expression of gluconeogenesis-related phosphoenolpyruvate carboxykinase (PEPCK) mRNA was inhibited, while fibroblast growth factor 19 (FGF19) was significantly higher. Bile acids reshaped the intestinal microflora community, with the level of Bacteroidetes increasing. The correlation analysis indicated that Patescibacteria, Dependentiae, Myxococcota, and Planctomycetota in the gut are associated with genes involved in glucose and lipid metabolism. These results indicated that bile acids could ameliorate the negative effects of high-fat diets on common carp.
RESUMO
The remarkable roles of metal promoters have been known for nearly a century, but it is still a challenge to find a suitable structure model to reveal the action mechanism behind metal promoters. Herein, a new function of metal-organic frameworks (MOFs) is developed as an ideal model to construct structurally ordered metal promoters by a targeted post-modification strategy. MOFs as model not only favor clearing the real action mechanism behind metal promoters, but also can anchor one or multiple kinds of metal promoters especially noble metal promoters. Typically, the as-prepared Pd/bpy-UiO-Cu catalysts show high selectivity (>99%) toward 4-nitrophenylethane in 4-nitrostyrene hydrogenation, mainly due to the enhanced interaction between Pd nanoparticles and MOF carriers induced by Cu promoters, thus inhibiting the hydrogenation of 4-nitrophenylethane. This strategy with flexibility and universality will open up a new route to synthesize efficient catalysts with structurally ordered metal promoters.
RESUMO
A 56-day feeding trial was conducted to investigate the effects of genistein on growth, lipid metabolism, antioxidant capacity, and immunity of common carp fed with high-carbohydrate or high-fat diets. Five diets were used to feed fish: control diet (5% fat; CO), high-fat diet (11% fat; HF), high-carbohydrate diet (45% carbohydrate; HC), and HF or HC diet with 500 mg/kg genistein (FG or CG). Results showed that final body weight (FW) and specific growth rate (SGR) were significantly reduced, but the supplementation with genistein resulted in higher values of FW and SGR than the HF or HC group. Both high carbohydrate and high fat belong to high-energy diets, which may promote lipid deposition. Genistein obviously decreased liver triglyceride (TG) content and alleviated hepatic fat vacuolation in the HF and HC groups. The expression of lipid metabolism genes (cpt-1 and atgl) was markedly higher in the FG group than in the HF group. The lipid synthesis-related genes (fas, acc, and pparγ) were elevated in high-energy diets but recovered to the control level or reduced after genistein treatments. With respect to fatty acid transporter genes, fatp increased in the FG group, and cd36 increased in the CG group. Furthermore, the antioxidant and immune indexes, such as total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), acid phosphatase (ACP), and lysozyme (LZM) activities, were decreased, while malonate aldehyde (MDA) content, activities of alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were enhanced in the HF and HC groups. The antioxidant and immunity values could be ameliorated by treatment with genistein. Moreover, the transcript levels of antioxidant-related genes (cat, gr, and nrf2) in the liver and anti-inflammatory factors (tgf-ß and il-10) and lyz in the head kidney tissue were promoted, although the expression levels of proinflammatory factors (tnf-α and il-6) declined in the genistein supplementation group, which confirmed the antioxidant and immune-enhancing effects of genistein. Therefore, 500 mg/kg genistein could ameliorate the negative effects of high-energy diets on immunity.
RESUMO
The design of a highly effective isopropanol gas sensor with high response and trace detection capability is extremely important for environmental surveillance and human health. Here, novel flower-like PtOx@ZnO/In2O3 hollow microspheres were prepared by a three-step approach. The hollow structure was composed of an In2O3 shell inside and layered ZnO/In2O3 nanosheets outside with PtOx nanoparticles (NPs) on the surface. Meanwhile, the gas sensing performances of the ZnO/In2O3 composite with different Zn/In ratios and PtOx@ZnO/In2O3 composites were evaluated and compared systematically. The measurement results indicated that the ratio of Zn/In affected the sensing performance and the ZnIn2 sensor presented a higher response, which was then modified with PtOx NPs to further enhance its sensing property. The Pt@ZnIn2 sensor exhibited outstanding isopropanol detection performance with ultrahigh response values under 22 and 95% relative humidity (RH). In addition, it also showed a rapid response/recovery speed, good linearity, and low theoretical limit of detection (LOD) regardless of being under a relatively dry or ultrahumid atmosphere. The enhancement of isopropanol sensing properties might be ascribed to the unique structure of PtOx@ZnO/In2O3, heterojunctions between the components, and catalytic effect of Pt NPs.
RESUMO
We report an oxygen vacancy (Vo )-rich metallic MoO2-x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo -rich MoO2-x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8â µmol gcatalyst -1 h-1 under full spectrum and NIR light illumination in concentrated CO2 , which is ca. 7- and 10-fold higher than the Vo -poor MoO2-x , respectively. More interestingly, the as-developed Vo -rich MoO2-x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5â µmol gcatalyst -1 h-1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2-x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo-C-O-Mo intermediate.