RESUMO
Heart failure (HF) is still the main cause of mortality worldwide. This study investigated the characteristics of human pericardial fluid-derived cells (hPFCs) and their effects in treating doxorubicin (DOX)-induced HF rats through intrapericardial injection. hPFCs were isolated from patients who underwent heart transplantation (N = 5). These cells that primarily expressed SCA-1, NANOG, and mesenchymal markers, CD90, CD105, and CD73, were able to form adipocytes, osteoblasts, and cardiomyocytes in vitro. Passage 3 hPFCs (2.5 × 105 cells/heart) were injected into the pericardial cavity of the DOX-injured rat hearts, significantly improving cardiac functions after 4 weeks. The tracked and engrafted red fluorescent protein-tagged hPFCs coexpressed cardiac troponin T and connexin 43 after 4 weeks in the host myocardium. This observation was also coupled with a significant reduction in cardiac fibrosis following hPFC treatment (P < 0.0001 vs. untreated). The elevated inflammatory cytokines interleukin (IL)-6, IL-10, and tumor necrosis factor-α in the DOX-treated hearts were found to be significantly reduced (P < 0.001 vs. untreated), while the regional proangiogenic vascular endothelial growth factor A (VEGFA) level was increased in the hPFC-treated group after 4 weeks (P < 0.05 vs. untreated). hPFCs possess stem cell characteristics and can improve the cardiac functions of DOX-induced HF rats after 4 weeks through pericardial administration. The improvements were attributed to a significant reduction in cardiac fibrosis, inflammation, and elevated regional proangiogenesis factor VEGFA, with evidence of cellular engraftment and differentiation in the host myocardium.
RESUMO
The applications of rate-compatible low-density parity-check (RC-LDPC) codes are investigated for a 16 quadrature amplitude modulation (16QAM) signal and coherent detection system. With rate-compatible signals, we can provide the flexible net data rate between 135.5 Gb/s and 169.7 Gb/s in a passive optical network (PON) link. Based on the LDPC codes defined in the IEEE 802.3ca standard, we construct two sets of RC-LDPC codes with a fixed and variable information bit length. Since the puncturing operation may degrade the performance of LDPC codes, we apply the protograph-based extrinsic information transfer (PEXIT) technique to optimize the puncturing positions to mitigate the degradation. Additionally, we explore four low-complexity LDPC decoding algorithms (min sum, offset min sum, variable weight min sum, and relaxed min sum with 2nd min emulation) to investigate the relationship between the computational complexity and decoding performance. Simulation results indicate that the constructed codewords exhibit good performance in the waterfall region across a range of code rates. Finally, we conduct an experimental setup in a dual-polarization 25 GBaud 16QAM coherent PON to verify the effectiveness of the constructed LDPC codes with four decoding algorithms. The experimental results show maximal 4.8 dB receiver sensitivity differences, which demonstrate the feasibility of the method for constructing RC-LDPC codes in future high-speed flexible coherent PON.
RESUMO
Peripheral nerve defects, particularly those of a larger size, pose a significant challenge in clinical practice due to their limited regenerative capacity. To tackle this challenge, an advanced self-powered enzyme-linked microneedle (MN) nerve conduit is designed and fabricated. This innovative conduit is composed of anodic and cathodic MN arrays, which contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles, respectively. Through an enzymatic cascade reaction, this MN nerve conduit generates microcurrents that stimulate the regeneration of muscles, blood vessels, and nerve fibers innervated by the sciatic nerve, eventually accelerating the repair of sciatic nerve injury. It is clear that this self-powered MN nerve conduit will revolutionize traditional treatment methods for sciatic nerve injury and find widespread application in the field of nerve tissue repair.
Assuntos
Tecido Nervoso , Traumatismos dos Nervos Periféricos , Ratos , Animais , Ratos Sprague-Dawley , Nervo Isquiático/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Próteses e Implantes , Regeneração Nervosa/fisiologiaRESUMO
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Assuntos
Gado , Zinco , Animais , Zinco/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , DNARESUMO
Diabetic wounds with complex pathological features and a difficult-to-heal nature remain a formidable challenge. To address this challenge, we design and fabricate a self-powered enzyme-linked microneedle (MN) patch composed of anode and cathode MN arrays, which respectively contain glucose oxidase (GOx) and horseradish peroxidase (HRP) encapsulated in ZIF-8 nanoparticles. The enzymatic cascade reaction in the MN patch can effectively reduce local hyperglycemia in diabetic wounds while generating stable microcurrents to promote rapid healing of diabetic wounds. Therefore, the diabetic wounds treated with this MN patch exhibit rapid, complete, and scar-preventative healing, which can be attributed to the synergistic actions of hypoglycemic, antibacterial, anti-inflammatory, and bioelectrical stimulation. In brief, the self-powered MN patch is an effective method to rapidly promote diabetic wound healing and prevent scar formation.
Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Cicatriz , Cicatrização/fisiologiaRESUMO
The glucose metabolism of poultry draws wide attention as they have nearly twice the fasting blood glucose than that of mammals. To define the relationship between glucose metabolism and breed of chicken, the outcomes from different growth rate chickens showed that Arbor Acres (AA) broilers, a well-known fast-growing breed, had a lower fasting blood glucose concentration and glucose clearance rate when compared to Silky chickens, a Chinese traditional medicinal chicken with black skin and a slow growth rate. Moreover, AA broilers had a relatively slow rise in blood glucose in response to oral glucose solution than the Silky chickens on 21 and 42 d (P < 0.05), which is probably attributed to downregulated expression of pancreatic insulin (INS), and upregulated transcription of phosphoenolpyruvate carboxy kinase 1 (PCK1) and glucose transporter 2 (GLUT2) in the liver of AA broilers (P < 0.05). In response to feeding restriction from 7 to 21 d, both the fasting blood glucose and the response speed of AA broilers to oral glucose were increased on d 21 (P < 0.05), and the serum glucose concentrations after 3 weeks compensatory growth were improved by early feed restriction in AA broilers. Feed restriction could also upregulate the mRNA level of pancreatic INS on d 21 and 42, as well as decrease the expressions of PCK1, glucose-6-phosphatase catalytic (G6PC), and GLUT2 in the liver on d 21 (P < 0.05) when compared to the free feeding group. These results revealed that Silky chickens have a stronger capability to regulate glucose homeostasis than AA broilers, and feed restriction could improve the fasting blood glucose and the response to oral glucose of AA broilers.
RESUMO
Background: The sensitivity and correlation of coronary computed tomography angiography (CTA) as compared with histopathology are unknown in evaluating coronary arterial calcification. In this study, we retrospectively evaluated qualitatively and quantitatively the sensitivity and correlation of coronary CTA compared with histopathology in assessing coronary arterial calcification. Methods: This study was conducted on 12 randomly selected cadavers aged over 40 years at the time of death, and 53 segments of coronary arteries from these 12 cadavers were obtained from the Human Anatomy Laboratory of Tianjin Medical University. The artery segments were scanned using contrasted-enhanced dual-source computed tomography (DSCT) with an axial slice thickness of 0.6 mm. Coronary artery calcification in a coronary segment was defined as the presence of 1 or more voxels with a CT density >130 Hounsfield units. According to the arc of calcification in the cross section of the coronary artery wall, calcified plaques were divided into three categories: mild, moderate, and severe calcification. The coronary artery stenosis caused by calcified plaque was observed and calculated with multiplanar reconstruction (MPR), maximum density projection, volume rendering (VR), and cross-sectional reconstruction. After CT enhancement scanning, the coronary artery specimens were cut into 4-mm long segments and embedded in paraffin for pathological staining. Pathological classification and coronary artery stenosis measured with pathological analysis were used as comparison criteria. Results: Histopathology detected 69 Vb-type plaques, while DSCT detected 57 calcified plaques. The sensitivity of CT for detecting mild, moderate, and severe calcified plaques were 88.3% [95% confidence interval (CI): 74.1-95.6%], 100% (95% CI: 69.8-100%), and 100% (95% CI: 73.2-100%), respectively. DSCT had a significant (P<0.001) correlation with histopathology in quantifying coronary artery stenosis caused by mild, moderate, and severe calcified plaques (R2=0.9278, R2=0.9158, R2=0.7923, respectively). Compared with histopathology, DSCT overestimated coronary artery stenosis caused by mild, moderate, and severe calcified plaques (3.2%±2.0%, 4.9%±4.7%, and 14.7%±8.2%, respectively; P<0.05). Conclusions: DSCT contrast enhancement scanning can detect and characterize coronary artery calcification with a good correlation with histopathologic quantification of coronary artery stenosis caused by different types of calcified plaques, even though coronary CTA may overestimate the stenosis.
RESUMO
The aims of the present study were to examine the signaling mechanisms for transforming growth factor-ß1 (TGF-ß1)-induced rat airway smooth muscle cells (ASMCs) proliferation and migration and to determine the effect of lipoxin A4 (LXA4) on TGF-ß1-induced rat ASMCs proliferation and migration and its underlying mechanisms. TGF-ß1 upregulated transcriptional coactivator Yes-associated protein (YAP) expression by activating Smad2/3 and then upregulated cyclin D1, leading to rat ASMCs proliferation and migration. This effect was reversed after treatment with the TGF-ß1 receptor inhibitor SB431542. YAP is a critical mediator of TGF-ß1-induced ASMCs proliferation and migration. Knockdown of YAP disrupted the pro-airway remodeling function of TGF-ß1. Preincubation of rat ASMCs with LXA4 blocked TGF-ß1-induced activation of Smad2/3 and changed its downstream targets, YAP and cyclin D1, resulting in the inhibition of rat ASMCs proliferation and migration. Our study suggests that LXA4 suppresses Smad/YAP signaling to inhibit rat ASMCs proliferation and migration and therefore has potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Assuntos
Ciclina D1 , Fator de Crescimento Transformador beta1 , Animais , Ratos , Remodelação das Vias Aéreas , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
This study aims to clarify molecular mechanisms and tumor-associated functions of LINC00312 in lung cancer. GEO database was used to acquire lung cancer-related expression microarrays. Then, relevant databases were applied to predict the downstream miRNA for LINC00312 and the target mRNA for the potential miRNA, with their associations deeply confirmed through dual-luciferase and RIP assays. The expression levels of epithelial-mesenchymal transition -related proteins (N-cadherin, Vimentin, MMP-2, and MMP-9) were examined by Western blot. The proliferation, migration, and invasion were evaluated through in vitro experiments including CCK-8 and Transwell assays and further validated by nude mouse xenograft tumor experiment. LINC00312, serving as a tumor suppressor, was down-regulated in lung cancer cells. RIP assay proved that miR-3175 bound LINC00312 and SEMA6A. The dual-luciferase assay showed that miR-3175 specifically targeted SEMA6A, suppressing the expression of SEMA6A. Overexpressing LINC00312 remarkably inhibited the binding between miR-3175 and SEMA6A. Overexpressing miR-3175 or silencing SEMA6A could hamper the effects of LINC00312 on lung cancer cells. LINC00312 inhibits lung cancer occurrence and progression via the miR-3175/SEMA6A axis.
Assuntos
Neoplasias Pulmonares , MicroRNAs , Semaforinas , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/metabolismo , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Semaforinas/genética , Semaforinas/metabolismoRESUMO
ppGpp is a ubiquitous small nucleotide messenger that mediates cellular self-protective responses under environmental stress. However, the mechanisms of ppGpp that control transcription and other metabolic processes depend on the species, and ppGpp regulates the same process via different mechanisms. The level of ppGpp is regulated by RelA/SpoT homolog (RSH) enzymes that synthesize and hydrolyze the alarmone. Here, we constructed a ppGpp0 strain and monitored the effects of ppGpp on the transcriptional level, physiology, and secondary metabiotic production in the antibiotic producer Streptomyces diastatochromogenes 1628. The results showed the cell division and growth of ppGpp0 increased by measurement of gene transcription and DCWs. The utilization of nitrogen was affected depending on the nitrogen type with a significantly higher DCW of the ppGpp0 mutant in the medium supplied with the yeast extract and a lower growth rate in the inorganic nitrogen ammonium salt. The ppGpp-mediated stringent response could not affect the usage of carbon resources. More importantly, ppGpp0 inhibited the expression of antibiotic clusters and the production of toyocamycin and tetramycin P. The antibiotic resistance was also significantly downregulated in the ppGpp0 mutant. In conclusion, this study showed detailed changes in ppGpp-mediated stringent responses on S. diastatochromogenes 1628 cell growth, nutrient utilization, morphological characteristics, antibiotic production, and resistance, which will provide insights into the role of ppGpp in Streptomyces. IMPORTANCE The ppGpp-mediated stringent response is widely distributed in Escherichia coli, Bacillus subtilis, Streptomyces, Staphylococcus aureus, etc. Stringent responses give strains the ability to resist environmental stresses, and survival from nutrition starvation, virulence, long-term persistence, biofilm formation, and gut colonization. ppGpp has many targets in cells and can reprogram DNA replication, transcription, ribosome biogenesis and function, and lipid metabolism. However, the mechanism of ppGpp to control transcription and other metabolic processes depends on the bacterial species and regulates the same process via a different mechanism. In Streptomyces, how ppGpp regulates the transcription remains to be elucidated. However, because ppGpp regulates many genes involved in primary and secondary metabolism, we compared the transcription and cell division, cell growth, morphological differentiation, antibiotic resistance, and secondary synthesis in the wild-type S. diastatochromogenes and ppGpp0 strains.
Assuntos
Guanosina Tetrafosfato , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos , Escherichia coli/genética , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão GênicaRESUMO
Despite significant scientific efforts in the field of water treatment, pollution of drinking water by toxic metal ions and synthetic organic compounds is becoming an increasing problem. The photocatalytic capabilities of CuInS2 nanoparticles were examined in this study for both the degradation of chloramphenicol (CAP) and the reduction of Cr(VI). CuInS2 nanoparticles were produced using a straightforward solvothermal approach and subsequently characterized by many analysis techniques. Simultaneous photocatalytic Cr(VI) reduction and CAP oxidation by the CuInS2 nanoparticles under visible-light demonstrated that lower pH and sufficient dissolved oxygen favored both Cr(VI) reduction and CAP oxidation. On the basis of active species quenching experiments, the possible photocatalytic mechanisms for Cr(VI) conversion with synchronous CAP degradation were proposed. Additionally, the CuInS2 retains a high rate of mixed pollutant removal after five runs. This work shows that organic contaminants and heavy metal ions can be treated concurrently by the visible-light-induced photocatalysis of CuInS2.
RESUMO
BACKGROUND: Constipation has been hypothesized to be associated with the increased risk of wheezing or asthma. However, the relation remains a subject of debate. We conducted this meta-analysis to assess whether constipation influences the risk of wheezing/asthma. METHODS: PubMed, Embase, and Web of Science were systematically searched for studies published between 1955 and January 2022. Two reviewers independently extracted data and assessed the quality of each study. Results were pooled using fixed-effects models or random-effects models as appropriate. RESULTS: In total, 3 original articles with 178,661 participants, which met the criteria, were included in this meta-analysis. Constipation was associated with an increased risk of wheezing/asthma in later life (RR = 2.02, 95% CI = 1.24-3.29, P < 0.01). CONCLUSIONS: The meta-analysis suggests an association between constipation and the subsequent development of wheezing/asthma. Well-designed and highly standardized prospective studies that adequately address concerns for potential confounding factors are required to validate the risk identified in our current meta-analysis.
RESUMO
BACKGROUND: Escherichia coli (E. coli) infection in humans and animals usually comes with gut dysbiosis, which is potential culprit to skeletal health, it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development. Here, the effects of resistant starch from raw potato starch (RPS), a type of prebiotic, on E. coli-induced bone loss and gut microbial composition in meat ducks were evaluated. RESULTS: The results showed that dietary 12% RPS treatment improved bone quality, depressed bone resorption, and attenuated the pro-inflammatory reaction in both ileum and bone marrow. Meanwhile, the 12% RPS diet also increased the abundance of Firmicutes in E. coli-treated birds, along with higher production of short-chain fatty acids (SCFAs) especially propionate and butyrate. Whereas addition of ß-acid, an inhibitor of bacterial SCFAs production, to the drinking water of ducks fed 12% RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement. Further, treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) activity replicated the protective role of dietary 12% RPS in E. coli-induced bone loss including reduced the inhibition on nuclear factor κB (NF-κB) inflammasome activation, decreased bone resorption, and improved bone quality, which were correlated with comparable and higher regulatory T cells (Treg) frequency in MI-2 and 12% RPS group, respectively. CONCLUSIONS: These findings suggested that the diet with 12% RPS could alleviate E. coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production, and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion.
RESUMO
Irinotecan and Topotecan are two Camptothecin derivatives (CPTs) whose resistance is associated with the high expression of breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp). To reverse this resistance, two novel CPTs, FL77-28 (7-(3-Fluoro-4-methylphenyl)-10,11-methylenedioxy-20(S)-CPT) and FL77-29 (7-(4-Fluoro-3-methylphenyl)-10,11-methylenedioxy-20(S)-CPT), were synthesized by our group. In this study, the anti-tumor activities of FL77-28, FL77-29, and their parent, FL118 (10,11-methylenedioxy-20(S)-CPT), were evaluated and the results showed that FL77-28 and FL77-29 had stronger anti-tumor activities than FL118. The transport and uptake of FL118, FL77-28, and FL77-29 were investigated in Caco-2 cells for the preliminary prediction of intestinal absorption. The apparent permeability coefficient from apical to basolateral (Papp AP-BL) values of FL77-28 and FL77-29 were (2.32 ± 0.04) × 10-6 cm/s and (2.48 ± 0.18) × 10-6 cm/s, respectively, suggesting that the compounds had moderate absorption. Since the transport property of FL77-28 was passive diffusion and the efflux ratio (ER) was less than 2, two chemical inhibitors were added to further confirm the involvement of efflux proteins. The results showed that FL77-28 was not a substrate of P-gp or BCRP, but FL77-29 was mediated by P-gp. In conclusion, FL77-28 might be a promising candidate to overcome drug resistance induced by multiple efflux proteins.
Assuntos
Camptotecina , Proteínas de Neoplasias , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transporte Biológico , Células CACO-2 , Camptotecina/análogos & derivados , Camptotecina/metabolismo , Humanos , Proteínas de Neoplasias/metabolismoRESUMO
Gut microbiota interfered with using prebiotics may improve bone mass and alleviate the onset of bone problems. This study aimed to investigate the beneficial effect of resistant starch from raw potato starch (RPS) on bone health in meat ducks. Response to the dietary graded level of RPS supplementation, both tibia strength and ash were taken out linear and quadratic increase and positively correlated with increased propionate and butyrate levels in cecal content. Moreover, further outcomes of gut microbiota and micro-CT analysis showed the beneficial effect of RPS on bone mass might be associated with higher Firmicutes proportion and the production of short-chain fatty acids (SCFAs) in the cecum. Consistent with improving bone mass, SCFAs promoted phosphorus absorption, decreased the digestive tract pH, and enhanced intestinal integrity, which decreased the expression of pro-inflammatory genes in both gut and bone marrow, and consequently depressed osteoclastic bone resorption mediated by inflammatory cytokines. These findings highlight the importance of the "gut-bone" axis and provide new insight into the effect of prebiotics on bone health.
RESUMO
A simple and efficient ultrasonic-assisted approach was designed to synthesize CdS/microcrystalline cellulose (MCC) nanocomposite photocatalyst. The obtained products have been characterized by XRD, FE-SEM, TEM, UV-Vis DRS, and nitrogen adsorption isotherms. The results showed that the intimate contact of MCC and CdS is beneficial for enhancing the photocatalytic performance because heterojunction formation can efficiently promote the separation of photogenerated electrons and holes of the nanocomposite photocatalyst. By using 10% MCC coupled CdS, the decoloration rate of methylene blue (MB) in the solution under visible-light was increased nearly 50%. In addition, the reuse experiments confirmed that the CdS/MCC nanocomposite photocatalyst had outstanding cycle performance and durability. Mechanism study demonstrated that hydroxyl radicals, photogenerated holes and superoxide radicals were the active species in the photocatalytic oxidization degradation of MB.
RESUMO
Fatty liver hemorrhagic syndrome is characterized by hepatic damage and hemorrhage impairing animal welfare in birds, which was well-known to be moderately relieved through dietary choline chloride supplementation in laying hens. Chinese herb has been proven to exert a positive role on hepatic health in human and rodents. Here, we investigated the effect of herbaceous mixture (HM), which consists of Andrographis paniculate, Silybum marianum, Azadirachta Indica, and Ocimum basilicum (2:3.5:1:2), on the hepatic lipid metabolism and health status in laying hens. A total of 240 Hy-line Brown hens (389-day-old) were randomly fed the basal diet with 0 mg/kg choline chloride (negative control, NC), 1,000 mg/kg choline chloride (control, Ctrl), or 300 mg/kg HM for 28 d. Birds fed HM diet exhibited lower serum triglyceride (TG) and low-density lipoprotein cholesterol concentration, and higher high-density lipoprotein cholesterol level than those received NC and Ctrl diets (P < 0.05). When compared to control and NC group, the diets with HM decreased the contents of total cholesterol and TG in liver, as well as upregulated the mRNA abundance of hepatic hormone-sensitive lipase and lipoprotein lipase. Meanwhile, the hepatic area and diameter of steatosis vacuoles were also decreased by dietary HM administration (P < 0.05), which accompanied by decreased serum alanine aminotransferase activity (P < 0.05). Birds fed HM diets enhanced the hepatic antioxidative capacity than those received NC and Ctrl diet. Dietary HM depressed the mRNA level of inflammatory cytokine as compared to NC but not Ctrl group. Collectively, the diet with 300 mg/kg HM has a favorable effect in decreasing the lipid deposition and protecting liver injury by alleviating hepatic oxidant stress and inflammation in post-peak laying hens.
Assuntos
Ração Animal , Fígado Gorduroso , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Fígado Gorduroso/veterinária , Feminino , Nível de Saúde , Lipídeos , Plantas , RNA Mensageiro/metabolismoRESUMO
OBJECTIVE: Diet acidification supplementation is known to influence intestinal morphology, gut microbiota, and on phosphorus (P) utilization of broilers. Alterations in intestinal barrier and microbiota have been associated with systemic inflammation and thus regulating bone turnover. Hence the effect of acidifier addition to drinking water on tibia mass and the linkages between intestinal integrity and bone were studied. METHODS: One-d-old male broilers were randomly assigned to normal water (control) or continuous supply of acidified water (2% the blend of 2-hydroxy-4-methylthiobutyric acid, lactic, and phosphoric acid) group with 5 replicates of 10 chicks per replicate for 42 d. RESULTS: Acidification of drinking water improved the ash percentage and calcium content of tibia at 42 d. Broilers receiving acidified water had increased serum P concentration compared to control birds. The acidified group showed improved intestinal barrier, evidenced by increased wall thickness, villus height, the villus height to crypt depth ratio, and upregulated mucin-2 expression in ileum. Broilers receiving drinking water containing mixed organic acids had a higher proportion of Firmicutes and the ratio of Firmicutes and Bacteroidetes, as well as a lower population of Proteobacteria. Meanwhile, the addition of acidifier to drinking water resulted in declined ileal and serum proinflammatory factors level and increased immunoglobulin concentrations in serum. Concerning bone remodeling, acidifier addition was linked to a decrease in serum C-terminal cross-linked telopeptide of type I collagen and tartrate-resistant acid phosphatase reflecting bone resorption, whereas it did not apparently change serum alkaline phosphatase activity that is a bone formation marker. CONCLUSION: Acidified drinking water increased tibia mineral deposition of broilers, which was probably linked with higher P utilization and decreased bone resorption through improved intestinal integrity and gut microbiota and through decreased systemic inflammation.
RESUMO
Klebsiella pneumoniae (K. pneumoniae) is an important pathogen that can cause severe hospital- and community-acquired infections. To systematically investigate its methylation features, we determined the whole-genome sequences of 14 K. pneumoniae strains covering varying serotypes, multilocus sequence types, clonal groups, viscosity/virulence, and drug resistance. Their methylomes were further characterized using Pacific Biosciences single-molecule real-time and bisulfite technologies. We identified 15 methylation motifs [13 N6-methyladenine (6mA) and two 5-methylcytosine (5mC) motifs], among which eight were novel. Their corresponding DNA methyltransferases were also validated. Additionally, we analyzed the genomic distribution of GATC and CCWGG methylation motifs shared by all strains, and identified differential distribution patterns of some hemi-/un-methylated GATC motifs, which tend to be located within intergenic regions (IGRs). Specifically, we characterized the in vivo methylation kinetics at single-base resolution on a genome-wide scale by simulating the dynamic processes of replication-mediated passive demethylation and MTase-catalyzed re-methylation. The slow methylation of the GATC motifs in the replication origin (oriC) regions and IGRs implicates the epigenetic regulation of replication initiation and transcription. Our findings illustrate the first comprehensive dynamic methylome map of K. pneumoniae at single-base resolution, and provide a useful reference to better understand epigenetic regulation in this and other bacterial species.
Assuntos
Epigênese Genética , Epigenoma , Klebsiella pneumoniae/genética , Cinética , Metilação de DNARESUMO
In the evaluation of the druggability of candidate compounds, it was vital to predict the oral bioavailability of compounds from apparent permeability (Papp) across Caco-2 cell-culture model of intestinal epithelium cultured on commercial transwell plate inserts. The study was to investigate the transport characteristics and permeability of FL118 (10, 11-Methylenedioxy-20(S)-camptothecin) derivatives 7-Q6 (7-(4-Ethylphenyl)-10, 11-methylenedioxy-20(S)-camptothecin) and 7-Q20 (7-(4-Trifluoromethylphenyl)-10, 11-methylenedioxy-20(S)-camptothecin). Transport characteristics and permeability of the tested compounds to the small intestine were assessed at different concentrations (0.5, 1 µM) via Caco-2 cell monolayers model in vitro. Uptake studies based on Caco-2 cells, including temperatures, concentrations, and the influence of efflux transporters, were combined to confirm the transport characteristics of the tested compounds. Furthermore, cytotoxicity results showed that the concentrations used in the experiments were non-toxic and harmless to cells. In addition, The Papp of 7-Q6 was (3.69 ± 1.07) × 10-6 cm/s with efflux ratio (ER) 0.98, while the Papp of 7-Q20 was (7.78 ± 0.89) × 10-6 cm/s with ER 1.05 for apical-to-basolateral (APâBL) at 0.5 µM, suggesting that 7-Q20 might possess higher oral bioavailability in vivo. Furthermore, P-glycoprotein (P-gp) was proved to slightly affect the accumulations of 7-Q20, while the absorption of 7-Q6 was irrelevant with P-gp and breast cancer resistant protein (BCRP) based on the cellular uptake assays. Accordingly, 7-Q6 was completely absorbed by passive diffusion, and 7-Q20 was mainly dependent on passive diffusion with being effluxed by P-gp slightly. Meanwhile, both 7-Q6 and 7-Q20 were potential antitumor drugs that might exhibit high oral bioavailability in the body.