Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Viruses ; 16(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38675895

RESUMO

Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.


Assuntos
Hepacivirus , Macrófagos , Células-Tronco Pluripotentes , SARS-CoV-2 , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Hepacivirus/imunologia , Hepacivirus/fisiologia , SARS-CoV-2/imunologia , Células-Tronco Pluripotentes/imunologia , Streptococcus pneumoniae/imunologia , COVID-19/imunologia , COVID-19/virologia , Hepatite C/imunologia , Hepatite C/virologia , Fagocitose , Viroses/imunologia , Imunidade Inata
2.
J Clin Med ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256480

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is a sudden onset of lung injury characterized by bilateral pulmonary edema, diffuse inflammation, hypoxemia, and a low P/F ratio. Epithelial injury and endothelial injury are notable in the development of ARDS, which is more severe under mechanical stress. This review explains the role of alveolar epithelial cells and endothelial cells under physiological and pathological conditions during the progression of ARDS. Mechanical injury not only causes ARDS but is also a side effect of ventilator-supporting treatment, which is difficult to model both in vitro and in vivo. The development of lung organoids has seen rapid progress in recent years, with numerous promising achievements made. Multiple types of cells and construction strategies are emerging in the lung organoid culture system. Additionally, the lung-on-a-chip system presents a new idea for simulating lung diseases. This review summarizes the basic features and critical problems in the research on ARDS, as well as the progress in lung organoids, particularly in the rapidly developing microfluidic system-based organoids. Overall, this review provides valuable insights into the three major factors that promote the progression of ARDS and how advances in lung organoid technology can be used to further understand ARDS.

3.
Front Cell Dev Biol ; 10: 873264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393852

RESUMO

Recent single-cell atlases of the heart gave unprecedented details about the diversity of cell types and states during heart development in health and disease conditions. Beyond a profiling tool, researchers also use single-cell analyses to dissect the mechanism of diseases in animal models. The new knowledge from these studies revealed that beating cardiomyocytes account for less than 50% of the total heart cell population. In contrast, non-cardiomyocytes (NCMs), such as cardiac fibroblasts, endothelial cells, and immune cells, make up the remaining proportion and have indispensable roles in structural support, homeostasis maintenance, and injury repair of the heart. In this review, we categorize the composition and characteristics of NCMs from the latest single-cell studies of the heart in various contexts and compare the findings from both human samples and mouse models. This information will enrich our understanding of the cellular basis of heart development and diseases and provide insights into the potential therapeutic targets in NCMs to repair the heart.

4.
Front Cell Dev Biol ; 10: 883861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733851

RESUMO

With the development of ever more powerful and versatile high-throughput sequencing techniques and innovative ways to capture single cells, mapping the multicellular tissues at the single-cell level is becoming routine practice. However, it is still challenging to depict the epigenetic landscape of a single cell, especially the genome-wide chromatin accessibility, histone modifications, and DNA methylation. We summarize the most recent methodologies to profile these epigenetic marks at the single-cell level. We also discuss the development and advancement of several multi-omics sequencing technologies from individual cells. Advantages and limitations of various methods to compare and integrate datasets obtained from different sources are also included with specific practical notes. Understanding the heart tissue at single-cell resolution and multi-modal levels will help to elucidate the cell types and states involved in physiological and pathological events during heart development and disease. The rich information produced from single-cell multi-omics studies will also promote the research of heart regeneration and precision medicine on heart diseases.

5.
Nat Commun ; 13(1): 3131, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668082

RESUMO

Human pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes. Single-cell analysis of cells undergoing the endothelial-to-hematopoietic transition and comparison with in vivo hemogenic endothelial cells reveal important features of in vitro and in vivo hematopoiesis. We find that JUNB is an essential regulator for hemogenic endothelium specialization and endothelial-to-hematopoietic transition. These studies depict an epigenomic roadmap from human pluripotent stem cells to hematopoietic progenitor cells, which may pave the way to generate hematopoietic progenitor cells with improved developmental potentials.


Assuntos
Hemangioblastos , Transcriptoma , Diferenciação Celular/genética , Epigenômica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fatores de Transcrição/metabolismo
6.
Stem Cell Reports ; 16(5): 1331-1346, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33891867

RESUMO

Stem cell-based embryo models by cultured pluripotent and extra-embryonic lineage stem cells are novel platforms to model early postimplantation development. We showed that induced pluripotent stem cells (iPSCs) could form ITS (iPSCs and trophectoderm stem cells) and ITX (iPSCs, trophectoderm stem cells, and XEN cells) embryos, resembling the early gastrula embryo developed in vivo. To facilitate the efficient and unbiased analysis of the stem cell-based embryo model, we set up a machine learning workflow to extract multi-dimensional features and perform quantification of ITS embryos using 3D images collected from a high-content screening system. We found that different PSC lines differ in their ability to form embryo-like structures. Through high-content screening of small molecules and cytokines, we identified that BMP4 best promoted the morphogenesis of the ITS embryo. Our study established an innovative strategy to analyze stem cell-based embryo models and uncovered new roles of BMP4 in stem cell-based embryo models.


Assuntos
Embrião de Mamíferos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Aprendizado de Máquina , Animais , Proteína Morfogenética Óssea 4/metabolismo , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Ectoderma/citologia , Implantação do Embrião/efeitos dos fármacos , Endoderma/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Transcriptoma/genética , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
7.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897852

RESUMO

Pitaya (Hylocereus polyrhizus) has attracted much interest from consumers as it is a novelty fruit with high nutrient content and a tolerance to drought stress. As a group of attractive pigment- and health-promoting natural compounds, betalains represent a visual feature for pitaya fruit quality. However, little information on the correlation between betalains and relevant metabolites exists so far. Currently, color (Commission International del'Eclairage, CIE) parameters, betalain contents, and untargeted metabolic profiling (gas chromatography-time-of-flight-mass spectrometry, GC⁻MS and liquid chromatography tandem mass spectrometry, LC⁻MS) have been examined on 'Zihonglong' fruits at nine different developmental stages, and the variation character of the metabolite contents was simultaneously investigated between peel and pulp. Furthermore, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used to explore metabolite profiles from the fruit samples. Our results demonstrated that the decrease of amino acid, accompanied by the increase of sugars and organic acid, might contribute to the formation of betalains. Notably, as one of four potential biomarker metabolites, citramalic acid might be related to betalain formation.


Assuntos
Cactaceae/metabolismo , Frutas/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo , Cactaceae/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento
8.
Sensors (Basel) ; 16(1)2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26751448

RESUMO

Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

9.
Sensors (Basel) ; 12(4): 4986-5004, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666072

RESUMO

In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA