Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
2.
J Colloid Interface Sci ; 670: 279-287, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763024

RESUMO

Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.


Assuntos
Antineoplásicos , Glutationa , Nanopartículas , Fotoquimioterapia , Pró-Fármacos , Espécies Reativas de Oxigênio , Glutationa/metabolismo , Glutationa/química , Nanopartículas/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Camundongos , Ensaios de Seleção de Medicamentos Antitumorais , Tamanho da Partícula , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Propriedades de Superfície , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Microambiente Tumoral/efeitos dos fármacos , Indolquinonas
3.
Opt Lett ; 49(8): 2073-2076, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621079

RESUMO

A self-mode-locked Ho:GdVO4 laser with the GHz pulse repetition frequency oscillation near 2.06 µm was demonstrated for the first time to our knowledge. The output performances of the self-mode-locked Ho:GdVO4 laser were investigated for a few output coupler transmittances at the pulse repetition frequency of 1.89 GHz. At the incident pump power of 8.12 W, the maximum average output power was as high as 2.28 W, corresponding to the slope efficiency and optical-to-optical efficiency of 36.3% and 28.1%, respectively. This is the maximum average output for the 2 µm self-mode-locked solid-state laser with a GHz pulse repetition frequency. This work provides a new way for generating an efficient and a high-power ultrafast pulse laser with a GHz repetition frequency in the 2 µm wave band.

4.
J Med Chem ; 67(9): 7516-7538, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686671

RESUMO

The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.


Assuntos
Desenho de Fármacos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Camundongos , Relação Estrutura-Atividade , Interleucina-1beta/metabolismo , Células THP-1 , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos Endogâmicos C57BL
5.
Opt Express ; 32(6): 10479-10489, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571258

RESUMO

We demonstrate an efficient active Q-switched Ho:GdVO4 self-Raman laser at 2500 nm for the first time, to our knowledge. Using Ho:GdVO4 crystal as the gain medium for both the 2048nm fundamental laser and the 2500 nm Raman laser, the output performances of a new mid-infrared self-Raman laser were investigated. The maximum average output power of 1.45 W was achieved at an incident pump power of 22.5 W, with a slope efficiency of 25.8%, for an output transmittance of 30% and a pulse repetition frequency of 15 kHz. The maximum single pulse energy of 96.7 µJ with a pulse width of 11.35 ns was obtained, corresponding to the peak power of 8.5 kW. The beam quality was near diffraction limited with the M2 factors of 1.15 and 1.06 along the x and y directions. Moreover, adopting the two-end output way of the fundamental laser and the Raman laser, the Raman gain coefficient of Ho:GdVO4 crystal was estimated to be 1.14 cm/GW at 2048nm. This work shows that Ho:GdVO4 is an excellent self-Raman laser crystal for the generation of high power Raman laser at 2.5 µm.

6.
Small ; : e2309321, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528424

RESUMO

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

7.
Sci Bull (Beijing) ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555262

RESUMO

The practical application of lithium-sulfur (Li-S) batteries is inhibited by the shuttle effect of lithium polysulfides (LiPSs) and slow polysulfide redox kinetics on the S cathode as well as the uncontrollable growth of dendrites on the Li metal anode. Therefore, both cathode and anode sides must be considered when modifying Li-S batteries. Herein, two-dimensional (2D) ultrathin CoSe2 nanobelts are in situ grown on 2D N-doped MXene nanosheets (CoSe2@N-MXene) via one-step solvothermal process for the first time. Owing to its unique 2D/2D structure, CoSe2@N-MXene can be processed to crumpled nanosheets by freeze-drying and flexible and freestanding films by vacuum filtration. These crumpled CoSe2@N-MXene nanosheets with abundant active sites and inner spaces can act as S hosts to accelerate polysulfide redox kinetics and suppress the shuttle effect of LiPSs owing to their strong adsorption ability and catalytic conversion effect with LiPSs. Meanwhile, the CoSe2@N-MXene film (CoSe2@NMF) can act as a current collector to promote uniform Li deposition because it contains lithiophilic CoSe2 and N sites. Under the systematic effect of CoSe2@N-MXene on S cathode and Li metal anode, the electrochemical and safety performance of Li-S batteries are improved. CoSe2@NMF also shows excellent storage performances in flexible energy storage devices.

8.
Talanta ; 272: 125786, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382303

RESUMO

NAD(P)H: quinine oxidoreductase (NQO1) is overexpressed in many types of cancer cells, and have been used as a biomarker for cancer diagnosis and targeted therapy. The development of activatable theranostic agents is highly desirable for precise cancer diagnosis and therapy. Herein, a NQO1-activated near-infrared multifunctional theranostic probe I-HCy-Q is successfully developed for imaging guided photodynamic therapy. The NIR fluorescence (λex/em = 685/703 nm) and capacity of reactive oxygen species generation are sensitive controllable by the level of NQO1, the linear detection range of NQO1 and limit of detection are 0.05-1.5 µg/mL and 5.66 ng/mL, respectively. On the one hand, I-HCy-Q can monitor the activity of NQO1 and distinguish the NQO1 positive cancer cells; on the other hand, the capacity of mitochondria-targeted photodynamic therapy makes I-HCy-Q an effective inducer of apoptosis and immunogenic cell death. Attribute to its complementary advantages, I-HCy-Q holds potential for the imaging and treatment of tumors in complex organisms.

9.
Sci Adv ; 10(6): eadi9284, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324683

RESUMO

Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inflamassomos/metabolismo , Cisteína/metabolismo , Gasderminas , Lipoilação
10.
Eur J Prev Cardiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302118

RESUMO

AIMS: The lack of effective pharmacotherapies for aortic aneurysms (AA) is a persistent clinical challenge. Lipid metabolism plays an essential role in AA. However, the impact of lipid-lowering drugs on AA remains controversial. The study aimed to investigate the genetic association between lipid-lowering drugs and AA. METHODS: Our research used publicly available data on genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) studies. Genetic instruments, specifically eQTLs related to drug-target genes and SNPs (single nucleotide polymorphisms) located near or within the drug-target loci associated with low-density lipoprotein cholesterol (LDL-C), have been served as proxies for lipid-lowering medications. Drug-Target Mendelian Randomization (MR) study is used to determine the causal association between lipid-lowering drugs and different types of AA. RESULTS: The MR analysis revealed that higher expression of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase) was associated with increased risk of AA (OR = 1.58, 95% CI = 1.20-2.09, p = 1.20 × 10-03) and larger lumen size (aortic maximum area: OR = 1.28, 95% CI = 1.13-1.46, p = 1.48 × 10-04; aortic minimum area: OR = 1.26, 95% CI = 1.21-1.42, p = 1.78 × 10-04). PCSK9 (Proprotein convertase subtilisin/kexin type 9) and CETP (Cholesteryl ester transfer protein) show a suggestive relationship with AA (PCSK9: OR = 1.34, 95% CI = 1.10-1.63, p = 3.07 × 10-03; CETP: OR = 1.38, 95% CI = 1.06-1.80, p = 1.47 × 10-02). No evidence to support genetically mediated NPC1L1 (Niemann-Pick C1-Like 1) and LDLR (low-density lipoprotein cholesterol receptor) are associated with AA. CONCLUSIONS: This study provides causal evidence for the genetic association between lipid-lowering drugs and aortic aneurysms. Higher gene expression of HMGCR, PCSK9, and CETP increases AA risk. Furthermore, HMGCR inhibitors may link with smaller aortic lumen size.


This Mendelian Randomization study used publicly available data involving over 1 million individuals to demonstrate the causal relationship between five target genes of LDL-C-lowering medicines and the risk of aortic aneurysms, and implied one lipid-lowering drug may link with the lumen size of aortic aneurysms. Key findings High expression of HMGCR, PCSK9, and CETP was positively correlated with the risk of aortic aneurysms, highlighting that the corresponding lipid-lowering drugs may be preferred for preventing arterial aneurysms in high-risk individuals with dyslipidemia. We found that genetically predicted HMGCR inhibitors were positively associated with smaller aortic lumen size, which is the first time to support the causal association of gene HMGCR on the lumen size of aortic aneurysms.

11.
Adv Mater ; 36(2): e2306015, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37615277

RESUMO

As an indispensable component of rechargeable batteries, the current collector plays a crucial role in supporting the electrode materials and collecting the accumulated electrical energy. However, some key issues, like uneven resources, high weight percentage, electrolytic corrosion, and high-voltage instability, cannot meet the growing need for rechargeable batteries. In recent years, MXene-based current collectors have achieved considerable achievements due to its unique structure, large surface area, and high conductivity. The related research has increased significantly. Nonetheless, a comprehensive review of this area is seldom. Herein the applications and progress of MXene in current collector are systematically summarized and discussed. Meanwhile, some challenges and future directions are presented.

12.
Chin Med J (Engl) ; 137(3): 303-311, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37538048

RESUMO

BACKGROUND: Immunoglobulin G4-related disease (IgG4-RD) is a recently recognized immune-mediated disorder that can affect almost any organ in the human body. IgG4-RD can be categorized into proliferative and fibrotic subtypes based on patients' clinicopathological characteristics. This study aimed to compare the clinical manifestations, laboratory findings, and treatment outcomes of IgG4-RD among different subtypes. METHODS: We prospectively enrolled 622 patients with newly diagnosed IgG4-RD at Peking Union Medical College Hospital from March 2011 to August 2021. The patients were divided into three groups according to their clinicopathological characteristics: proliferative, fibrotic, and mixed subtypes. We compared demographic features, clinical manifestations, organ involvement, laboratory tests, and treatment agents across three subtypes. We then assessed the differences in treatment outcomes among 448 patients receiving glucocorticoids alone or in combination with immunosuppressants. Moreover, risk factors of relapse were revealed by applying the univariate and multivariate Cox regression analysis. RESULTS: We classified the 622 patients into three groups consisting of 470 proliferative patients, 55 fibrotic patients, and 97 mixed patients, respectively. We found that gender distribution, age, disease duration, and frequency of allergy history were significantly different among subgroups. In terms of organ involvement, submandibular and lacrimal glands were frequently involved in the proliferative subtype, while retroperitoneum was the most commonly involved site in both fibrotic subtype and mixed subtype. The comparison of laboratory tests revealed that eosinophils ( P = 0.010), total IgE ( P = 0.006), high-sensitivity C-reactive protein ( P <0.001), erythrocyte sedimentation rate ( P <0.001), complement C4 ( P <0.001), IgG ( P = 0.001), IgG1 (P <0.001), IgG4 (P <0.001), and IgA ( P <0.001), at baseline were significantly different among three subtypes. Compared with proliferative and mixed subtypes, the fibrotic subtype showed the lowest rate of relapse (log-rank P = 0.014). CONCLUSIONS: Our study revealed the differences in demographic characteristics, clinical manifestations, organ involvement, laboratory tests, treatment agents, and outcomes across proliferative, fibrotic, and mixed subtypes in the retrospective cohort study. Given significant differences in relapse-free survival among the three subtypes, treatment regimens, and follow-up frequency should be considered separately according to different subtypes.


Assuntos
Doença Relacionada a Imunoglobulina G4 , Humanos , Doença Relacionada a Imunoglobulina G4/tratamento farmacológico , Doença Relacionada a Imunoglobulina G4/patologia , Estudos Retrospectivos , Estudos Prospectivos , Resultado do Tratamento , Imunoglobulina G , Recidiva
13.
Lipids Health Dis ; 22(1): 209, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037060

RESUMO

BACKGROUND: Visceral adiposity index (VAI) and lipid accumulation product (LAP) are comprehensive indicators to evaluate visceral fat and determine the metabolic health of individuals. Carotenoids are a group of naturally occurring antioxidants associated with several diseases. The purpose of this investigation was to explore the association between serum carotenoid concentration and VAI or LAP. METHODS: The data were obtained from the National Health and Nutrition Examination Survey between 2001 and 2006. The levels of serum carotenoids were evaluated using high-performance liquid chromatography. Multivariate linear regression models were employed to investigate the relationship between levels of serum carotenoids and VAI or LAP. The potential non-linear relationship was determined using threshold effect analysis and fitted smoothing curves. Stratification analysis was performed to investigate the potential modifying factors. RESULTS: In total, 5,084 participants were included in this population-based investigation. In the multivariate linear regressions, compared to the lowest quartiles of serum carotenoids, the highest quartiles were significantly associated with VAI, and the effect size (ß) and 95% CI was - 0.98 (- 1.34, - 0.62) for α-carotene, - 1.39 (- 1.77, - 1.00) for ß-carotene, - 0.79 (- 1.18, - 0.41) for ß-cryptoxanthin, - 0.68 (- 0.96, - 0.39) for lutein/zeaxanthin, and - 0.88 (- 1.50, - 0.27) for trans-lycopene. Using piece-wise linear regression models, non-linear relationships were found between ß-carotene and trans-lycopene and VAI with an inflection point of 2.44 (log2-transformed, ug/dL) and 3.80 (log2-transformed, ug/dL), respectively. The results indicated that α-carotene, ß-cryptoxanthin, and lutein/zeaxanthin were linearly associated with VAI. An inverse association was also found between serum carotenoids and LAP after complete adjustments. CONCLUSION: This study revealed that several serum carotenoids were associated with VAI or LAP among the general American population. Further large prospective investigations are warranted to support this finding.


Assuntos
Produto da Acumulação Lipídica , beta Caroteno , Humanos , Licopeno , Inquéritos Nutricionais , Estudos Transversais , Luteína , Zeaxantinas , beta-Criptoxantina , Adiposidade , Estudos Prospectivos , Carotenoides
14.
J Med Chem ; 66(21): 14447-14473, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37879043

RESUMO

NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1ß and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.


Assuntos
Artrite Reumatoide , Diabetes Mellitus Tipo 2 , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-1beta , Piroptose
15.
J Med Chem ; 66(19): 13428-13451, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756547

RESUMO

NLRP3 is an intracellular sensor protein that causes inflammasome formation and pyroptosis in response to a wide range of stimuli. Aberrant activation of NLRP3 inflammasome has been implicated in various chronic inflammatory diseases, making it a promising target for therapeutic intervention. In this work, a series of novel triazinone inhibitors of NLRP3 inflammasome were designed and synthesized. Compound L38 was identified for its excellent activity and acceptable metabolic stability among 41 compounds. Additionally, mechanism studies indicated that L38 inhibited NLRP3 inflammasome activation and pyroptosis by suppressing gasdermin D cleavage, ASC oligomerization, and NLRP3 inflammasome assembly while leaving mitochondrial ROS production, lysosome damage, and chloride/potassium efflux unaffected. Further investigation revealed that L38 could bind to the NACHT domain to exert inflammatory properties. Importantly, L38 exhibited positive therapeutic effects in DSS-induced ulcerative colitis mouse model. Taken together, this study presents a promising inhibitor of NLRP3 inflammasome deserving further investigation.


Assuntos
Colite Ulcerativa , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Camundongos Endogâmicos C57BL
16.
J Med Chem ; 66(16): 11365-11389, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37582195

RESUMO

Sepsis-associated acute kidney injury (AKI) is a serious clinical problem, without effective drugs. Abnormal activation of the purinergic P2X7 receptor (P2X7R) in septic kidneys makes its antagonist a promising therapeutic approach. Herein, a series of novel P2X7R antagonists were designed, synthesized, and structurally optimized. Based on in vitro potency in human/mouse P2X7R using HEK293 cells, hepatic microsomal stability, and pharmacokinetic and preliminary in vivo assessments, compound 14a was identified by respective human and mouse P2X7R IC50 values of 64.7 and 10.1 nM, together with favorable pharmacokinetic properties. Importantly, 14a dose-dependently alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice with a good safety profile. Mechanistically, 14a could suppress NLRP3 inflammasome activation to inhibit the expression of cleaved caspase-1, gasdermin D, IL-1ß, and IL-18 in the injured kidneys of septic mice. Collectively, these results highlighted that P2X7R antagonist 14a exerted a therapeutic potential against septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Humanos , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Caspase 1/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Rim/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7 , Sepse/tratamento farmacológico
17.
Adv Healthc Mater ; 12(28): e2301469, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571991

RESUMO

The special redox homeostasis of tumor cells makes reactive oxygen species (ROS)-based approaches a promising cancer therapeutic strategy. Among these approaches, photodynamic therapy is the most widely studied ROS-based treatment due to its ability to achieve targeted therapy by local light irradiation. However, achieving efficient and continuous ROS generation without prolonged laser exposure is still challenging. In this work, a photo-activated continuous ROS nanoamplifier is proposed for photodynamic-chemodynamic cascade therapy. Upon local laser irradiation, the nanoamplifier can continuously amplify cellular oxidative stress through a positive feedback loop of "light-triggered ROS generation, ROS-responsive prodrug activation, and Fenton reaction-mediated ROS cyclic regenerative amplification", avoiding tissue damage caused by excessive laser exposure. This strategy provides a potential pathway to overcome the limitations of ROS-based therapeutic approaches.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Pró-Fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
18.
Genes Dis ; 10(5): 2082-2096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492741

RESUMO

Accumulating evidence supports the association of somatic mutations with tumor occurrence and development. We aimed to identify somatic mutations with important implications in hepatocellular carcinoma (HCC) and explore their possible mechanisms. The gene mutation profiles of HCC patients were assessed, and the tumor mutation burden was calculated. Gene mutations closely associated with tumor mutation burden and patient overall survival were identified. In vivo and in vitro experiments were performed to verify the effects of putative genes on proliferation, invasion, drug resistance, and other malignant biological behaviors of tumor cells. Fourteen genes with a high mutation frequency were identified. The mutation status of 12 of these genes was closely related to the mutation burden. Among these 12 genes, LRP1B mutation was closely associated with patient prognosis. Nine genes were associated with immune cell infiltration. The results of in vivo and in vitro experiments showed that the knockdown of LRP1B promotes tumor cell proliferation and migration and enhances the resistance of tumor cells to liposomal doxorubicin. LRP1B could directly bind to NCSTN and affect its protein expression level, thereby regulating the PI3K/AKT pathway. Our mutational analysis revealed complex and orchestrated liposomal alterations linked to doxorubicin resistance that may also render cancers less susceptible to immunotherapy and also provides new treatment alternatives.

19.
J Control Release ; 360: 564-577, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442200

RESUMO

Phototherapies, mainly including photodynamic and photothermal therapy, have made considerable strides in the field of cancer treatment. With the aid of phototherapeutic agents, reactive oxygen species (ROS) or heat are generated under light irradiation to selectively damage cancer cells. However, sole-modality phototherapy faces certain drawbacks, such as limited penetration of phototherapeutic agents into tumor tissues, inefficient ROS generation due to hypoxia, treatment-induced inflammation and resistance of tumor to treatment (e.g., high levels of antioxidants, expression of heat shock protein). Gas therapy, an emerging therapy approach that damages cancer cells by improving the level of certain gas at the tumor site, shows potential to overcome the challenges associated with phototherapies. In addition, with the rapid development of nanotechnology, gas-assisted phototherapy based on nanomedicines has emerged as a promising strategy to enhance the treatment efficacy. This review summarizes recent advances in gas-assisted phototherapy and discusses the prospects and challenges of this strategy in cancer phototherapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fototerapia , Neoplasias/terapia , Neoplasias/patologia , Nanotecnologia , Fármacos Fotossensibilizantes
20.
Opt Lett ; 48(13): 3495-3498, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390164

RESUMO

A dual-wavelength passively Q-switched Ho:GdVO4 self-Raman laser in the 2.5 µm wave band was demonstrated with Cr:ZnS as a saturable absorber. Synchronized dual-wavelength pulsed laser outputs at 2473 nm and 2520 nm were acquired, corresponding to Raman frequency shifts of 808 cm-1 and 883 cm-1, respectively. The maximum total average output power of 114.9 mW was obtained at an incident pump power of 12.8 W with a pulse repetition rate of 3.57 kHz and a pulse width of 16.36 ns. The maximum total single pulse energy was 32.18 µJ, corresponding to a total peak power of 1.97 kW. The power ratios of the two Raman lasers can be controlled by varying the incident pump power. To the best of our knowledge, this is the first time a dual-wavelength passively Q-switched self-Raman laser in the 2.5 µm wave band has been reported.


Assuntos
Lasers , Frequência Cardíaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA