Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Phys Chem A ; 128(7): 1297-1305, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349766

RESUMO

The formation of environmentally persistent free radicals (EPFRs) is usually related to transition-metal oxides in particulate matter (PM). However, recent studies suggest that alkaline-earth-metal oxides (AEMOs) in PM also influence EPFRs formation, but the exact mechanism remains unclear. Here, density functional theory calculations were performed to investigate the formation mechanism of EPFRs by C6H5OH on AEMO (MgO, CaO, and BaO) surfaces and compare it with that on transition-metal oxide (ZnO and CuO) surfaces. Results indicate that EPFRs can be rapidly formed on AEMOs by dissociative adsorption of C6H5OH, accompanied by electrons transfer. As the alkalinity of AEMOs increases, both adsorption energy and the number of electron transfers gradually increase. Also, the stability of the formed EPFRs is mainly attributed to the electrostatic and van der Waals interactions between the phenoxy radical and surfaces. Notably, the formation mechanism of EPFRs on AEMOs is similar to that on ZnO but differs from that on CuO, as suggested through geometric structure and charge distribution analyses. This study not only elucidates the formation mechanisms of EPFRs on AEMOs but also provides theoretical insights into addressing EPFRs pollution.

2.
J Am Chem Soc ; 146(2): 1467-1475, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38186050

RESUMO

We present a novel mechanism for the formation of photocatalytic oxidants in deliquescent NaCl particles, which can greatly promote the multiphase photo-oxidation of SO2 to produce sulfate. The photoexcitation of the [Cl--H3O+-O2] complex leads to the generation of Cl and OH radicals, which is the key reason for enhancing aqueous-phase oxidation and accelerating SO2 oxidation. The mass normalization rate of sulfate production from the multiphase photoreaction of SO2 on NaCl droplets could be estimated to be 0.80 × 10-4 µg·h-1 at 72% RH and 1.33 × 10-4 µg·h-1 at 81% RH, which is equivalent to the known O3 liquid-phase oxidation mechanism. Our findings highlight the significance of multiphase photo-oxidation of SO2 on NaCl particles as a non-negligible source of sulfate in coastal areas. Furthermore, this study underscores the importance of Cl- photochemistry in the atmosphere.

3.
Phys Chem Chem Phys ; 25(25): 16745-16752, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37323049

RESUMO

By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.

4.
Proc Natl Acad Sci U S A ; 120(20): e2219588120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155894

RESUMO

Aerosol microdroplets as microreactors for many important atmospheric reactions are ubiquitous in the atmosphere. pH largely regulates the chemical processes within them; however, how pH and chemical species spatially distribute within an atmospheric microdroplet is still under intense debate. The challenge is to measure pH distribution within a tiny volume without affecting the chemical species distribution. We demonstrate a method based on stimulated Raman scattering microscopy to visualize the three-dimensional pH distribution inside single microdroplets of varying sizes. We find that the surface of all microdroplets is more acidic, and a monotonic trend of pH decreasing is observed in the 2.9-µm aerosol microdroplet from center to edge, which is well supported by molecular dynamics simulation. However, bigger cloud microdroplet differs from small aerosol for pH distribution. This size-dependent pH distribution in microdroplets can be related to the surface-to-volume ratio. This work presents noncontact measurement and chemical imaging of pH distribution in microdroplets, filling the gap in our understanding of spatial pH in atmospheric aerosol.

5.
J Am Chem Soc ; 145(19): 10817-10825, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133920

RESUMO

Marine aerosol formation involving iodine-bearing species significantly affects the global climate and radiation balance. Although recent studies outline the critical role of iodine oxide in nucleation, much less is known about its contribution to aerosol growth. This paper presents molecular-level evidence that the air-water interfacial reaction of I2O4 mediated by potent atmospheric chemicals, such as sulfuric acid (H2SO4) and amines [e.g., dimethylamine (DMA) and trimethylamine (TMA)], can occur rapidly on a picosecond time scale by Born-Oppenheimer molecular dynamics simulations. The interfacial water bridges the reactants while facilitating the DMA-mediated proton transfer and stabilizing the ionic products of H2SO4-involved reactions. The identified heterogeneous mechanisms exhibit the dual contribution to aerosol growth: (i) the ionic products (e.g., IO3-, DMAH+, TMAH+, and HSO4-) formed by reactive adsorption possess less volatility than the reactants and (ii) these ions, such as alkylammonium salts (e.g., DMAH+), are also highly hydrophilic, further facilitating hygroscopic growth. This investigation enhances not only our understanding of heterogeneous iodine chemistry but also the impact of iodine oxide on aerosol growth. Also, these findings can bridge the gap between the abundance of I2O4 in the laboratory and its absence in field-collected aerosols and provide an explanation for the missing source of IO3-, HSO4-, and DMAH+ in marine aerosols.

6.
J Phys Chem Lett ; 14(18): 4357-4364, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37140136

RESUMO

Cation exchange (CE) under mild conditions promises a facile strategy to anchor single metal sites on colloidal chalcogenides toward catalytic applications, which however has seldom been demonstrated. The dilemma behind this is the rapid kinetics and high efficiency of the reaction disfavoring atomic dispersion of the metal species. Here we report that a fine-tuning of the affinity between the incoming metal cations and the deliberately introduced ligands can be exploited to manipulate the kinetics of the CE reaction, in a quantitative and systematic manner defined by the Tolman electronic parameter of the ligands used. Moreover, the steric effect of metal-ligand complexes offers thermodynamic preference for spatial isolation of the metal atoms. These thereby allow the rational construction of single atom catalysts (SACs) via simple one-step CE reactions, as exemplified by the CE-derived incorporation of single metal atoms (M = Cu, Ag, Au, Pd) on SnS2 two-unit-cell layers through M-S coordination.

7.
Sci Total Environ ; 859(Pt 1): 159832, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36404466

RESUMO

Iodous acid (HIO2) has been shown to play a stabilizing role in the nucleation of iodic acid (HIO3) (He et al., 2021). However, the stabilization effect and specific stabilizing mechanism of HIO2 on HIO3 nucleation under different atmospheric conditions remain unclear. Therefore, we studied these two issues under different temperatures and nucleation precursor concentrations using density functional theory combined with the Atmospheric Cluster Dynamics Code. We found that HIO2 can form clusters with HIO3 via strong hydrogen bonds, halogen bonds, and proton-transfer, substantially enhancing the stability of HIO3 clusters and decreasing the energy barrier of HIO3-based cluster formation at different temperatures and nucleation precursor concentrations. The particle formation rate and cluster concentrations of HIO3-HIO2 nucleation were negatively correlated with temperature and positively correlated with HIO2 concentration. The enhancements by HIO2 on the particle formation rate and cluster concentration of HIO3 nucleation were positively correlated with temperature and HIO2 concentration. Interestingly, even at a low HIO2 concentration (1.0 × 105 molecules cm-3), the enhancement on the particle formation rate and cluster concentration of HIO3 nucleation by HIO2 were both unexpectedly up to 4.1 × 104-fold at 283 K. Therefore, HIO3-HIO2 nucleation can be extremely rapid in cold regions, and the enhancement by HIO2 can be significant, especially in warm regions even at relatively high HIO2 concentrations.


Assuntos
Atmosfera , Ácidos Sulfúricos , Atmosfera/química , Iodatos , Clima
8.
Natl Sci Rev ; 9(10): nwac137, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196118

RESUMO

Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid-base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.

9.
Phys Chem Chem Phys ; 24(22): 13651-13660, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611676

RESUMO

Iodous acid (HIO2), a vital iodine oxyacid, potentially plays an important role in the formation of new particles in marine areas (He et al., Science, 2021, 371, 589-595). However, the nucleation mechanism of HIO2 is still poorly understood. Herein, the self-nucleation of HIO2 under different atmospheric conditions is investigated by a combination of quantum chemical calculations and the Atmospheric Cluster Dynamics Code (ACDC) simulations. The results indicate that HIO2 can form relatively stable molecular clusters through hydrogen bonds and halogen bonds, and the self-nucleation of HIO2 proceeds by sequential addition of HIO2 or HIO2-based small clusters. Besides, in order to better illustrate the role of HIO2 in new particle formation (NPF) in marine areas, we compare its nucleation properties with those of iodic acid (HIO3), a significant iodine-containing nucleation precursor in marine regions. We find that the cluster formation rate of the self-nucleation of HIO2 is higher than that of the self-nucleation of HIO3 although [HIO2] is lower than [HIO3], which indicates that the HIO2 molecule is a more efficient nucleation precursor than the HIO3 molecule. Therefore, the self-nucleation of HIO2 could become one of the most important sources for NPF in marine areas, which could provide potential theoretical evidence for explaining the intensive NPF events observed in these areas.


Assuntos
Atmosfera , Iodo , Atmosfera/química , Iodatos , Ácidos Sulfúricos/química
10.
Chemosphere ; 303(Pt 1): 134854, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35533943

RESUMO

Environmentally persistent free radicals (EPFRs) have been recognized as harmful and persistent environmental pollutants. In polluted regions, many acidic and basic atmospheric pollutants, which are present at high concentrations, may influence the extent of the formation of EPFRs. In the present paper, density functional theory (DFT) and ab-initio molecular dynamics (AIMD) calculations were performed to investigate the formation mechanisms of EPFRs with the influence of the acidic pollutants sulfuric acid (SA), nitric acid (NA), organic acid (OA), and the basic pollutants, ammonia (A), dimethylamine (DMA) on α-Al2O3 (0001) surface. Results indicate that both acidic and basic pollutants can enhance the formation of EPFRs by acting as "bridge" or "semi-bridge" roles by proceeding via a barrierless process. Acidic pollutants enhance the formation of EPFRs by first transferring its hydrogen atom to the α-Al2O3 surface and subsequently reacting with phenol to form an EPFR. In contrast, basic pollutants enhance the formation of EPFRs by first abstracting a hydrogen atom from phenol to form a phenoxy EPFR and eventually interacting with the α-Al2O3 surface. These new mechanistic insights will inform in understanding the abundant EPFRs in polluted regions with high mass concentrations of acidic and basic pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Radicais Livres/análise , Hidrogênio , Material Particulado/análise , Fenol
11.
J Environ Sci (China) ; 114: 412-421, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459504

RESUMO

Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.


Assuntos
Poluentes Ambientais , Iodo , Aerossóis , Atmosfera , Catálise , Iodetos
12.
ACS Appl Mater Interfaces ; 13(45): 54096-54105, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34749501

RESUMO

Aqueous zinc-ion batteries (ZIBs) are regarded as a promising candidate for ultrafast charge storage owing to the high ionic conductivity of aqueous electrolytes and high theoretical capacity of zinc metal anodes. However, the strong electrostatic interaction between high-charge-density zinc ions and host materials generally leads to sluggish ion-transport kinetics and structural collapse of rigid cathode materials during the charge/discharge process, so searching for suitable cathode materials for ultrafast and long-term stable ZIBs remains a great challenge. Herein, flexible electron-rich ion channels enabling fast-charging and stable aqueous ZIBs have been demonstrated. Because of the nitrogen-rich conjugated structure of organic phenazine (PNZ) molecules, electron-rich ion channels are formed with the C═N redox centers situated on the channel surface, where zinc ions can transport rapidly and react with active moieties directly. Meanwhile, the π-conjugated systems and inherent flexibility of PNZ molecules can accommodate rapid strain changes and maintain their structural stability during zinc-ion intercalation/deintercalation. Consequently, they exhibit a high capacity of 94.2 mAh g-1 at an ultrahigh rate of 700C (208.6 A g-1) and an ultralong life over 100,000 cycles at 100C, which are superior to those of previously reported aqueous ZIBs. Our work presents a new way for developing ultrafast and ultrastable aqueous ZIBs.

13.
Inorg Chem ; 60(19): 14557-14562, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529409

RESUMO

Tetranuclear Cp4M4(CO)4 clusters have been synthesized for iron and vanadium but not for the intermediate first-row transition metals manganese and chromium. All of the low-energy structures of these "missing" Cp4M4(CO)4 (M = Mn, Cr) species are shown by density functional theory to consist of a central M4 tetrahedron with each of the four faces capped by a µ3-CO group. The individual low-energy structures differ in their spin states and in their formal metal-metal bond orders along the six edges of their central M4 tetrahedra. The two low-energy Cp4Mn4(µ3-CO)4 structures are a triplet structure with all Mn-Mn single bonds and a singlet structure with one Mn≡Mn triple bond and five Mn-Mn single bonds along the six tetrahedral edges. Related low-energy Cp4Cr4(µ3-CO)4 structures include a quintet structure with all Cr-Cr single bonds and a singlet structure with two Cr≡Cr triple bonds and four Cr-Cr single bonds. However, the potential energy surface of the Cp4Cr4(CO)4 system is complicated by three other structures of comparable energies including two triplet structures and one quintet structure with various combinations of single, double, and triple chromium-chromium bonds in the central Cr4 tetrahedron.

14.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34453007

RESUMO

Recent research [Wang et al., Nature 581, 184-189 (2020)] indicates nitric acid (NA) can participate in sulfuric acid (SA)-ammonia (NH3) nucleation in the clean and cold upper free troposphere, whereas NA exhibits no obvious effects at the boundary layer with relatively high temperatures. Herein, considering that an SA-dimethylamine (DMA) nucleation mechanism was detected in megacities [Yao et al., Science 361, 278-281 (2018)], the roles of NA in SA-DMA nucleation are investigated. Different from SA-NH3 nucleation, we found that NA can enhance SA-DMA-based particle formation rates in the polluted atmospheric boundary layer, such as Beijing in winter, with the enhancement up to 80-fold. Moreover, we found that NA can promote the number concentrations of nucleation clusters (up to 27-fold) and contribute 76% of cluster formation pathways at 280 K. The enhancements on particle formation by NA are critical for particulate pollution in the polluted boundary layer with relatively high NA and DMA concentrations.


Assuntos
Amônia/química , Dimetilaminas/química , Poluentes Ambientais/química , Poluição Ambiental/análise , Ácido Nítrico/química , Ácidos Sulfúricos/química , Atmosfera , Modelos Químicos , Termodinâmica
15.
Phys Chem Chem Phys ; 23(30): 15935-15949, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296723

RESUMO

Comprehensive investigations of the possible formation pathways of sulfate, the main composition of atmospheric aerosol in marine areas, continue to challenge atmospheric chemists. As one of the most important oxidation routes of S(iv) contributing to sulfate formation, the reaction process of S(iv) oxidized by hypobromic acid, which is ubiquitous with the gas-phase mixing ratios of ∼310 ppt and has a well-known oxidative capacity, has attracted wide attention. However, little information is available about the detailed reaction mechanism. Especially, due to the abundant species in cloud water, the potential effect of these compositions on these reaction processes and the corresponding effect mechanism are also uncertain. Using high-level quantum chemical calculations, we theoretically elucidate the two-step mechanism of Br+ transfer proposed by experiment through the verification of the key BrSO3- intermediate formation and subsequent hydrolysis reaction or the uncovered reaction of BrSO3- intermediate with OH-. Further, the novel and more competitive mechanisms (OH+ or O atom transfer pathways) that have not been considered in previous studies, leading to sulfate formation directly, have been found. Furthermore, it should be mentioned that we revealed the effect mechanism of constituents catalyzed in cloud water, especially the important H2O-catalyzed mechanism. In addition, all the above pathways follow this catalytic mechanism. This finding indicates a linkage between the complex nature of the atmospheric constituents and related atmospheric reaction, as well as the enhanced occurrence of atmospheric secondary sulfate formation in the atmosphere. Hence, this exploration of sulfate formation related to hypobromic acid could provide a better understanding about the sources of sulfate in marine areas.

16.
J Phys Chem A ; 125(19): 4200-4208, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33969990

RESUMO

Recent research has shown the almost barrierless cycloaddition reaction of the carboxylic acid with one SO3 to form products with group of -OSO3H, which can form stable clusters with the nucleation precursors through hydrogen bonds (Mackenzie et al., Science 2015, 349, 58). Oxalic acid (OA), the simplest and prevalent dicarboxylic acid, was selected as an example to clarify the possibility to react with two SO3 sequentially and the nucleation potential of products. The results indicate that OA can sequentially react with two SO3 through low reaction barriers to form the primary product (oxalic sulfuric anhydride (OSA)) and the secondary product (oxalic disulfuric anhydride (ODSA)). Interactions between atmospheric nucleation precursors and OSA, ODSA, or OA are in the order of ODSA > OSA > OA through evaluating the stability of generated clusters by the topological, thermodynamics, and kinetic analysis, which implies generated products could be nucleation stabilizers with nucleation potential positively correlating with the number of -OSO3H. This reaction mechanism contributes to a comprehensive understanding of the reactivity of dicarboxylic acid in the polluted environment as well as the role of products in organosulfur chemistry and, to some extent, help to explain the missing sources of new particle formation.

17.
Sci Total Environ ; 787: 147551, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000527

RESUMO

Secondary sulfate plays a crucial role in forming marine aerosol, which in turn is an important source of natural aerosol at a global level. Recent experimental studies suggest that oxidation of S(IV) compounds, in practice dissolved sulfur dioxide, to sulfate (S(VI)) by hypochloric acid could be one of the most significant pathways for sulfate formation in marine areas. However, the exact mechanism responsible for this process remains unknown. Using high-level quantum chemical calculations, we studied the reaction between dissolved sulfur dioxide and hypochloric acid. We account for the dominant protonation states of reactants in the pH range 3.0-9.0. We also consider possible catalytic effects of species such as H2O. Our results show that sulfate formation in HOCl+HOSO2- and HOCl+SO32- reactions relevant to acidic and nearly neutral conditions can occur either through previously proposed Cl+ transfer or through a novel HO+ transfer mechanism. In alkaline conditions, where the dominant reactants are OCl- and SO32-, an O atom transfer mechanism proposed in previous experimental studies may be more important than Cl+ transfer. Catalysis by common cloud-water species is found to lower barriers of Cl+ transfer mechanisms substantially. Nevertheless, we find that the dominant S(IV) + HOCl reaction mechanism for the full studied pH range is HO+ transfer from HOCl to SO32-, which leads directly to sulfate formation without ClSO3- intermediates. The rate-limiting barrier of this reaction is low, leading to an essentially diffusion-controlled reaction rate. S(IV) lifetimes due to this reaction decrease with increasing pH due to the increasing fractional population of SO32-. Especially in neutral and alkaline conditions, depletion of HOCl by the reaction is so rapid that S(IV) oxidation will be controlled mainly by mass transfer of gas-phase HOCl to the liquid phase. The mechanism proposed here may help to explain marine sulfate sources missing from current atmospheric models.

18.
Phys Chem Chem Phys ; 23(17): 10184-10195, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33751015

RESUMO

Amino acids are recognized as significant components of atmospheric aerosols. However, their potential role in atmospheric new particle formation (NPF) is poorly understood, especially aspartic acid (ASP), one of the most abundant amino acids in the atmosphere. It has not only two advantageous carboxylic acid groups but also one amino group, both of which are both effective groups enhancing NPF. Herein, the participation mechanism of ASP in the formation of new particle involving sulfuric acid (SA)-ammonia (A)-based system has been studied using the Density Functional Theory (DFT) combined with the Atmospheric Clusters Dynamic Code (ACDC). The results show that the addition of ASP molecules in the SA-A-based clusters provides a promotion on the interaction between SA and A molecules. Moreover, ACDC simulations indicate that ASP could present an obvious enhancement effect on SA-A-based cluster formation rates. Meanwhile, the enhancement strength R presents a positive dependence on [ASP] and a negative dependence on [SA] and [A]. Besides, the enhancement effect of ASP is compared with that of malonic acid (MOA) with two carboxylic acid groups (Chemosphere, 2018, 203, 26-33), and ASP presents a more obvious enhancement effect than MOA. The mechanism of NPF indicates that ASP could contribute to cluster formation as a "participator" which is different from the "catalytic" role of MOA at 238 K. These new insights are helpful to understand the mechanism of NPF involving organic compounds with multiple functional groups, especially the abundant amino acids, such as the ASP, in the urban/suburban areas with intensive human activities and industrial productions and therefore the abundant sources of amino acids. Furthermore, the NPF of the SA-A-based system involving amino acid should be considered when assessing the environmental risk of amino acid.


Assuntos
Aminoácidos/química , Atmosfera/química , Teoria da Densidade Funcional , Humanos , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Omega ; 6(3): 2410-2419, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521479

RESUMO

The effect of a single water molecule on the reaction of dimethyl sulfide (DMS) with BrO reaction has been investigated using quantum chemical calculations at the CCSD(T)/6-311++G**//BH&HLYP/aug-cc-pVTZ level of theory. Two reaction mechanisms have been considered both in the absence and the presence of water, namely, oxygen atom transfer and hydrogen abstraction, among which the oxygen atom transfer was predominant. Five reaction channels were found in the absence of water, in which the channels starting from the cis-configuration of the pre-reaction complexes were more favorable because of the low energy barrier. The inclusion of water slightly decreased the energy barrier height of most oxygen atom transfer channels, while making the hydrogen abstraction channels more complex. While the effective rate coefficients for the oxygen atom transfer paths are found to have decreased by 3-7 orders of magnitude in the presence of water relative to the water-free reactions, the negligible fraction of reactants that are effectively clustered with water does not significantly change the overall rate of the formation of dimethyl sulfoxide and Br. The present results show that the overall mechanism and rate of the DMS + BrO reaction may not be affected by humidity under atmospheric conditions.

20.
Chemosphere ; 253: 126743, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464777

RESUMO

In coastal regions, intense bursts of particles are frequently observed with high concentrations of iodine species, especially iodic acid (IA). However, the nucleation mechanisms of IA, especially in polluted environments with high concentrations of sulfuric acid (SA) and ammonia (A), remain to be fully established. By quantum chemical calculations and atmospheric cluster dynamics code (ACDC) simulations, the self-nucleation of IA in clean coastal regions and that influenced by SA and A in polluted coastal regions are investigated. The results indicate that IA can form stable clusters stabilized by halogen bonds and hydrogen bonds through sequential addition of IA, and the self-nucleation of IA can instantly produce large amounts of stable clusters when the concentration of IA is high during low tide, which is consistent with the observation that intense particle bursts were linked to high concentrations of IA in clean coastal regions. Besides, SA and A can stabilize IA clusters by the formation of more halogen bonds and hydrogen bonds as well as proton transfers, and the binary nucleation of IA-SA/A rather than the self-nucleation of IA appears to be the dominant pathways in polluted coastal regions, especially in winter. These new insights are helpful to understand the mechanisms of new particle formation induced by IA in clean and polluted coastal regions.


Assuntos
Poluentes Ambientais/análise , Iodatos/química , Amônia , Atmosfera/química , Poluição Ambiental , Ligação de Hidrogênio , Modelos Químicos , Ácidos Sulfúricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA