RESUMO
Faced with infectious bone defects, the development of a thermosensitive hydrogel containing icariin (ICA) represents a promising therapeutic strategy targeting infection control and bone regeneration. In this study, we prepared and evaluated the physicochemical properties, in vitro and in vivo drug release, antimicrobial activity, anti-inflammatory properties, and bone repair effects of ICA/Chitosan/ß-Glycerophosphate (ICA/CTS/ß-GP) thermosensitive hydrogel. Our findings demonstrate that the ICA/CTS/ß-GP thermosensitive hydrogel undergoes a liquid-to-gel transition at body temperature, which is crucial for maintaining local drug release at the defect site. Additionally, the hydrogel exhibited sustained release of ICA over 28 days, showing high antimicrobial activity against Staphylococcus aureus and good biocompatibility in blood compatibility tests. In a canine model of infectious bone defects, the ICA/CTS/ß-GP thermosensitive hydrogel showed effective infection control and modulated inflammation, vascular formation, and bone factor expression, while also activating the Wnt/ß-catenin signaling pathway. In conclusion, the ICA/CTS/ß-GP thermosensitive hydrogel could control infection and repair bone tissue. Its antimicrobial and osteogenic properties provide hope for its clinical application.
RESUMO
Bisphenols constitute a diverse group of endocrine-disrupting chemicals (EDCs) that impact hormone activity. Bisphenol F (BPF) is commonly used as a substitute for Bisphenol A (BPA). The disruption of the immune system by EDCs during embryonic brain development has been suggested as a plausible factor to neurodevelopmental disorders. We investigated the neurotoxic effects of perinatal exposure to BPF on offspring mice. Female mice were exposed to BPF through their drinking water on day 0.5 of pregnancy, and this exposure continued until the offspring mice were weaned, throughout the perinatal period. Our findings revealed that exposure to BPF hindered both growth and neurodevelopment in offspring mice, with a more pronounced effect observed in males. Additionally, transcriptomic analysis was conducted on the brains of male offspring mice exposed to high doses of BPF. In summary, our study indicates that perinatal exposure to BPF results in neurodevelopmental impairments in male offspring mice, linked to oxidative stress, inflammatory responses, and immune dysregulation. These findings underscore that BPF may not be a safe substitute for BPA. Thus, there is a pressing need to reevaluate the current regulation of BPF.
RESUMO
Epidemiologic studies suggest that prenatal exposure to bisphenols may increase the risk of respiratory disease in children. Bisphenol F (BPF), a member of the bisphenol family, is widely used in industrial production. However, the potential pulmonary toxic effects and mechanisms of BPF exposure on offspring remain unclear. In this study, maternal mice were exposed to 0, 40, 400, and 4000 µg/kg BPF during gestation and lactation. The results showed that an inflammatory response was observed in lungs of BPF-exposed female offspring mice, characterized by peribronchial inflammatory cell infiltration and an increase in the number of inflammatory cells in BALF. Subsequent transcriptome analysis identified a total of 685 differentially expressed genes (DEGs) were in lungs of female offspring mice exposed to high-dose BPF, with 526 upregulated genes and 159 downregulated genes. Among upregulated DEGs of top 10, most of the upregulated genes were associated with inflammatory responses. In addition, enrichment analysis showed that immunosuppression and oxidative damage were significantly enriched in lungs of female offspring mice, suggesting that BPF could induce immunosuppression and oxidative stress in lungs of female offspring mice. Overall, our findings provide mechanistic insights into the potential pulmonary toxicity associated with BPF exposure during gestation and lactation.
Assuntos
Compostos Benzidrílicos , Lactação , Pulmão , Exposição Materna , Fenóis , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Camundongos , Gravidez , Pulmão/efeitos dos fármacos , Exposição Materna/efeitos adversos , Estresse Oxidativo/efeitos dos fármacosRESUMO
Graphitic carbon nitride (g-C3N4) has been extensively investigated over the past decade for its potential utilizations in photocatalytic energy generation and pollutant degradation. To better meeting the requirements for practical utilizations, it is crucial to address the issue of poor charge separation properties in g-C3N4, which origin from the strong interactions in photogenerated electron-hole pairs. In this review, we summarized the pertinent studies on developing strategies to promote the charge separation properties of g-C3N4. The strategies can be categorized into two categories of promoting the surface migration of charge carriers and prolonging the lifetime of surface charge. Finally, we present potential challenges in promoting charge separation and offer feasible suggestions to face these challenges.
RESUMO
We reported a surface ligand manipulation strategy for hybrid MAPbI3 perovskite quantum dots (PeQDs) using methylamine iodide (MAI), methylamine thiocyanate (MASCN) and methylamine acetate (MAAc) salts. After MAI salt post-treatment, a record high efficiency of 14.98% was obtained for MAPbI3 PeQD solar cells together with enhanced ambient stability.
RESUMO
Murine hepatitis virus (MHV) infection is one of the most prevalent types of mice infection in laboratory. MHV could cause death in mice and even interfere with the results in animal experiments. Herein, we developed two isothermal approaches based on the Multienzyme Isothermal Rapid Amplification (MIRA), for rapid detection of MHV in conserved M gene. We designed and screened several pairs of primers and probes and the isothermal fluorescence detector was applied for the exonuclease â ¢ reverse transcription MIRA (exo-RT-MIRA) assay. To further simplify the workflow, the portable fluorescence visualization instrument, also as a palm-sized handheld system, was used for the naked-eye exo-RT-MIRA assay. The amplification temperature and time were optimized. The assay could be processed well at 42 °C 20 min for the exo-RT-MIRA and the naked-eye exo-RT-MIRA assay. The limit of detection (LoD) of the exo-RT-MIRA assay was 43.4 copies/µL. The LoD of the naked-eye exo-RT-MIRA assay was 68.2 copies/µL. No nonspecific amplifications were observed in the two assays. A total of 107 specimens were examined by qPCR and two assays developed. The experimental results statistical analysis demonstrated that the exo-RT-MIRA assay with the qPCR yielded sufficient agreement with a kappa value of 1.000 (p < 0.0001). The results also exhibited a good agreement (kappa value, 0.961) (p < 0.0001) between the naked-eye exo-RT-MIRA assay and the qPCR assay. In our study, the exo-RT-MIRA assay and the naked-eye exo-RT-MIRA assay presented the possibility of new methods in MHV point-of-testing diagnosis.
Assuntos
Limite de Detecção , Técnicas de Diagnóstico Molecular , Vírus da Hepatite Murina , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Primers do DNA/genética , Temperatura , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Hepatite Viral Animal/diagnóstico , Hepatite Viral Animal/virologia , Fluorescência , RNA Viral/genéticaRESUMO
The metal oxide electron transport layers (ETLs) of n-i-p perovskite solar cells (PSCs) are dominated by TiO2 and SnO2, while the efficacy of the other metal oxide ETLs still lags far behind. Herein, an emerging, economical, and environmentally friendly metal oxide, antimony oxide (Sb2Ox, x = 2.17), prepared by chemical bath deposition is reported as an alternative ETL for PSCs. The deposited Sb2Ox film is amorphous and very thin (â¼10 nm) but conformal on rough fluorine-doped tin oxide substrates, showing matched energy levels, efficient electron extraction, and then reduced nonradiative recombination in PSCs. The champion PSC based on the Sb2Ox ETL delivers an impressive power conversion efficiency of 24.7% under one sun illumination, which represents the state-of-the-art performance of all metal oxide ETL-based PSCs. Additionally, the Sb2Ox-based devices show improved operational and thermal stability compared to their SnO2-based counterparts. Armed with these findings, we believe this work offers an optional ETL for perovskites-based optoelectronic devices.
RESUMO
Ruddlesden-Popper (RP) interface with defined stacking structure will fundamentally influence the optoelectronic performances of lead-halide perovskite (LHP) materials and devices. However, it remains challenging to observe the atomic local structures in LHPs, especially for multi-dimensional RP interface hidden inside the nanocrystal. In this work, the advantages of two imaging modes in scanning transmission electron microscopy (STEM), including high-angle annular dark field (HAADF) and integrated differential phase contrast (iDPC) STEM, are successfully combined to study the bulk and local structures of inorganic and organic/inorganic hybrid LHP nanocrystals. Then, the multi-dimensional RP interfaces in these LHPs are atomically resolved with clear gap and blurred transition region, respectively. In particular, the complex interface by the RP stacking in 3D directions can be analyzed in 2D projected image. Finally, the phase transition, ion missing, and electronic structures related to this interface are investigated. These results provide real-space evidence for observing and analyzing atomic multi-dimensional RP interfaces, which may help to better understand the structure-property relation of LHPs, especially their complex local structures.
RESUMO
As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Mitocôndrias , Propionatos , Animais , Camundongos , Apoptose , Retículo Endoplasmático/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismoRESUMO
The worldwide prevalence of Aflatoxin B1 (AFB1), which contaminates feedstock and food, is on the rise. AFB1 inhibits testosterone (T) biosynthesis, but the mechanism is not yet clear. By establishing in vivo and in vitro models, this study found the number of Leydig cells (LCs), T content, and the expression of T biosynthesis key enzymes were suppressed after AFB1 treatment. AFB1 exposure also increased reactive oxygen species (ROS) and promoted mitochondrial injury and mitochondrial pathway apoptosis. Moreover, the AMPK signaling pathway was activated, and using an AMPK inhibitor relieved apoptosis and the suppressed T biosynthesis key enzymes of LCs caused by AFB1 through regulating downstream p53 and Nur77. Additionally, adding ROS intervention could inhibit AMPK activation and alleviate the decreased T content caused by AFB1. In summary, AFB1 promotes the apoptosis of LCs and inhibits T biosynthesis key enzyme expression via activating the ROS/AMPK signaling pathway, which eventually leads to T synthesis disorder.
Assuntos
Proteínas Quinases Ativadas por AMP , Aflatoxina B1 , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Testosterona , Apoptose , Estresse OxidativoRESUMO
The lead iodide (PbI2) in lead-halide perovskite (LHP) is both a positive additive for material properties and a site for the formation of device defects. Therefore, atomic-level detection of PbI2 and its derived Pb structures are crucial for understanding the performance and stability of the LHP material. In this work, the atomic imaging of the LHP, PbI2, and Pb lattices is achieved using low-dose integrated differential phase contrast (iDPC) scanning transmission electron microscopy (STEM). Combining it with the traditional high-angle annular dark field (HAADF)-STEM, the Pb precipitation in different LHPs (CsPbI3, CsPbBr3, and FAPbI3) and under different conditions (light, air, and heat) can be investigated in real space. Then, the features of Pb precipitation (positions and sizes) are visually revealed under different conditions and the stabilities of different LHPs. Meanwhile, the pathway of Pb precipitation is directly imaged and confirmed by the iDPC-STEM during an in situ heating process, supporting the detailed mechanism of Pb precipitation. These results provide the visual evidence for analyzing atomic Pb precipitation in LHPs, which helps better understand the structure-property relation induced by Pb impurity.
RESUMO
Colloidal quantum dots with lower surface ligand density are desired for preparing the active layer for photovoltaic, lighting, and other potential optoelectronic applications. In emerging perovskite quantum dots (PQDs), the diffusion of cations is thought to have a high energy barrier, relative to that of halide anions. Herein, we investigate the fast cross cation exchange approach in colloidal lead triiodide PQDs containing methylammonium (MA+) and formamidinium (FA+) organic cations, which exhibits a significantly lower exchange barrier than inorganic cesium (Cs+)-FA+ and Cs+-MA+ systems. First-principles calculations further suggest that the fast internal cation diffusion arises due to a lowering in structural distortions and the consequent decline in attractive cation-cation and cation-anion interactions in the presence of organic cation vacancies in mixed MA+-FA+ PQDs. Combining both experimental and theoretical evidence, we propose a vacancy-assisted exchange model to understand the impact of structural features and intermolecular interaction in PQDs with fewer surface ligands. Finally, for a realistic outcome, the as-prepared mixed-cation PQDs display better photostability and can be directly applied for one-step coated photovoltaic and photodetector devices, achieving a high photovoltaic efficiency of 15.05% using MA0.5FA0.5PbI3 PQDs and more precisely tunable detective spectral response from visible to near-infrared regions.
RESUMO
Photocatalysis has received much attention as an environmentally friendly route to manage the emerging organic pollution problems. Herein, BiOBr nanosheets have been synthesized by a hydrothermal method, and then PCN/BiOBr hybrids are designed via a facile wet chemical method. The as-prepared PCN/BiOBr hybrids are characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The PCN/BiOBr composite exhibits remarkable improved activity in the degradation of 2,4-dichlorophenol (2,4-DCP) as compared to the pristine BiOBr. Based on the ·OH amount-related fluorescence spectra fluorescence and the photoelectrochemistry (PEC) tests, it is confirmed that the enhanced photocatalytic performance of PCN/BiOBr is attributed to the promoted charge separation. Moreover, by means of the radical-trapping experiments it is demonstrated that the formed ·O2- species, as the electron-modulated direct products, are the primary active species during the photocatalytic degradation of 2,4-DCP. This work would provide a feasible design strategy to fabricate high-activity photocatalysts for 2,4-DCP degradation.
RESUMO
Chemical bath deposited (CBD) SnO2 is one of the most prevailing electron transport layers for realizing high-efficiency perovskite solar cells (PSCs) so far. However, the state-of-the-art CBD SnO2 process is time-consuming, contradictory to its prospect in industrialization. Herein, a simplified yet efficient method is developed for the fast deposition of SnO2 electrodes by incorporating a concentrated Sn source stabilized by the ethanol ligand with antimony (Sb) doping. The higher concentration of Sn source promotes the deposition rate, and Sb doping improves the hole-blocking capability of the CBD SnO2 layer so that its target thickness can be reduced to further save the deposition time. As a result, the deposition time can be appreciably reduced from 3-4 h to only 5 min while maintaining 95% of the maximum efficiency, indicating the power of the method toward high-throughput production of efficient PSCs. Additionally, the CBD SnO2 substrates are recyclable after removing the upper layers of complete PSCs, and the refurbished PSCs can maintain ≈98% of their initial efficiency after three recycling-and-fabrication processes.
RESUMO
Phase transition dynamics are an important concern in the wide applications of metal halide perovskites, which fundamentally determine the optoelectronic properties and stabilities of perovskite materials and devices. However, a more in-depth understanding of such a phase transition process with real atomic resolution is still limited by the immature low-dose electron microscopy and in situ imaging studies to date. Here, we apply an emergent low-dose imaging technique to identify different phase structures (α, ß and γ) in CsPbI3 nanocrystals during an in-situ heating process. The rotation angles of PbI6 octahedrons can be measured in these images to quantitatively describe the thermal-induced phase distribution and phase transition. Then, the dynamics of such a phase transition are studied at a macro time scale by continuously imaging the phase distribution in a single nanocrystal. The structural evolution process of CsPbI3 nanocrystals at the particle level, including the changes in morphology and composition, is also visualized with increasing temperature. These results provide atomic insights into the transition dynamics of perovskite phases, indicating a long-time transition process with obvious intermediate states and spatial distribution that should be generally considered in the further study of structure-property relations and device performance.
RESUMO
With the increasing demand for sustainable energy and concerns about the scarcity of lithium resources, sodium and potassium ion batteries have emerged as promising alternative energy storage technologies. MXene, as a novel two-dimensional material, possesses exceptional electrical conductivity, high surface area, and tunable structural features that make it an ideal candidate for high-performance electrode materials. However, its limited theoretical capacity hinders its widespread application. To overcome this limitation, MXene has been combined with other materials through synergistic effects between different components to enhance the overall electrochemical performance and expand its application in sodium/potassium ion batteries. Recently, substantial advancements have been realized in the exploration of MXene-based composites as energy storage materials, encompassing their synthesis, design, and the comprehension of charge storage mechanisms. This paper aims to propose a comprehensive summary of the latest developments in MXene-based composites as electrode materials for sodium ion batteries and potassium ion batteries, with a particular emphasis on the enhanced physicochemical properties resulting from composite formation. Moreover, the challenges faced by MXene materials in sodium ion batteries and potassium ion batteries are thoroughly discussed, and future research directions to further advance this field are proposed.
RESUMO
This study demonstrates an acetate ligand (AcO-)-assisted strategy for the controllable and tunable synthesis of colloidal methylammonium lead iodide (MAPbI3) perovskite nanocrystals (PNCs) for efficient photovoltaic and photodetector devices. The size of colloidal MAPbI3 PNCs can be tuned from 9 to 20 nm by changing the AcO-/MA ratio in the reaction precursor. In situ observations and detailed characterization results show that the incorporation of the AcO- ligand alters the formation of PbI6 octahedral cages, which controls PNC growth. A well-optimized AcO-/MA ratio affords MAPbI3 PNCs with a low defect density, a long carrier lifetime, and unique solid-state isotropic properties, which can be used to fabricate solution-processed dual-mode photovoltaic and photodetector devices with a conversion efficiency of 13.34% and a detectivity of 2 × 1011 Jones, respectively. This study provides an avenue to further the precisely controllable synthesis of hybrid PNCs for multifunctional optoelectronic applications.