RESUMO
Increased de novo lipogenesis is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) in obesity, but the macronutrient carbon source for over half of hepatic fatty acid synthesis remains undetermined. Here, we discover that dietary protein, rather than carbohydrates or fat, is the primary nutritional risk factor for MASLD in humans. Consistently, ex vivo tracing studies identify amino acids as a major carbon supplier for the tricarboxylic acid (TCA) cycle and lipogenesis in isolated mouse hepatocytes. In vivo, dietary amino acids are twice as efficient as glucose in fueling hepatic fatty acid synthesis. The onset of obesity further drives amino acids into fatty acid synthesis through reductive carboxylation, while genetic and chemical interventions that divert amino acid carbon away from lipogenesis alleviate hepatic steatosis. Finally, low-protein diets (LPDs) not only prevent body weight gain in obese mice but also reduce hepatic lipid accumulation and liver damage. Together, this study uncovers the significant role of amino acids in hepatic lipogenesis and suggests a previously unappreciated nutritional intervention target for MASLD.
RESUMO
The harsh climatic conditions and severe scarcity of surface soil present significant challenges to ecological restoration in open-pit mine dumps within China's type II plant cold resistance zone. To address the topsoil shortage, mineral black clay was used to create synthetic soil. This study explored the application of an ecological restoration bacteria (ERB) consortium to accelerate the ecological restoration of synthetic soil-covered areas by enhancing soil ecosystem construction. The results demonstrated that ERB significantly influenced the native bacterial community structure in mixed black clay. Specifically, ERB disrupted the inhibitory effects of the Actinobacterota phylum on the development of native bacterial diversity, leading to an increase in unclassified_o_Solirubrobacterales sp., norank_f_norank_o_norank_c_KD4-96 sp., Sphingomonas sp., Luteitalea sp., norank_f_Vicinamibacteraceae sp., and other aerobic and anaerobic bacteria. These alterations in soil microbial structure directly impacted soil composition and vegetation diversity. The plant diversity survey and metabolomics analysis revealed that the reduction of harmful substances, such as HPED, HODE, and HOME, in black clay soil improved the growth and distribution of Salsola collina Pall. and Medicago sativa L. This increase facilitated the cycling of key nutrients, such as nitrogen (N) and phosphorus (P), and promoted the establishment of symbiotic relationships between plants, microorganisms, and soil. Ultimately, the ecological remediation of the synthetic soil was achieved through the synergistic effects of ERB, which included the degradation of inhibitory soil components, enhanced nutrient consumption by microbiota and plants, and the overall promotion of ecosystem stability in the reclamation area.
RESUMO
Paper-based cultural relics often undergo acidification and deterioration during long-term preservation. Accurate detection of paper acidity is of great significance to assess aging status and extend the preservation lifetime of paper-based cultural relics. Rapid identification of the acidification degree and acid distribution across multiple regions of paper is essential. Inspired by fluorescent sensing technology, pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) and rhodamine B (RB) fluorescent probes are synthesized and incorporated onto the nanofibers of a bacterial cellulose (BC) membrane to enable visual acidity detection of paper. Due to the complementary pH detection range of CdTe QDs and RB probes, the composite BC membrane exhibits a clear pH response across an acidic to neutral range (pH 3.0-7.5). Notably, the contrasting fluorescent colors of the two probes within the BC membrane allow for easy visualization of paper pH and acidity distribution with the naked eyes. A distinct color transition from red to green was observed on the fluorescent BC membrane when it is applied to a model paper with a gradient pH distribution. The feasibility of this method was verified by using the flat-headed pH electrode method. Additionally, common metal ions in most paper fillers, inks, pigments, as well as some sugars and amino acids showed minimal interference with the pH response of the composite BC membrane, highlighting its potential and broad applicability for visual acidity detection in paper-based cultural relics.
RESUMO
Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.
Assuntos
Anexina A2 , Proliferação de Células , Receptores ErbB , Glicólise , Mucoproteínas , Proteínas Oncogênicas , Neoplasias Testiculares , Humanos , Mucoproteínas/genética , Mucoproteínas/metabolismo , Glicólise/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Animais , Proliferação de Células/genética , Masculino , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Proteínas/metabolismo , Proteínas/genética , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Invasividade NeoplásicaRESUMO
High temperature stress is one of the most severe forms of abiotic stress in alfalfa. With the intensification of climate change, the frequency of high temperature stress will further increase in the future, which will bring challenges to the growth and development of alfalfa. Therefore, untargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to different temperature stress (25 â, 30 â, 35 â, 40 â) in this study. Results revealed that High temperature stress significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up and down-regulated was 1876 and 1524 in T30_vs_CK, 2, 815 and 2667 in T35_vs_CK, and 2115 and 2, 226 in T40_vs_CK, respectively. The number for significantly up-regulated and down-regulated differential metabolites was 173 and 73 in T30_vs_CK, 188 and 57 in T35_vs_CK, and 220 and 66 in T40_vs_CK, respectively. It is worth noting that metabolomics and transcriptomics co-analysis characterized enriched in plant hormone signal transduction (ko04705), glyoxylate and dicarboxylate metabolism (ko00630), from which some differentially expressed genes and differential metabolites participated. In particular, the content of hormone changed significantly under T40 stress, suggesting that maintaining normal hormone synthesis and metabolism may be an important way to improve the HTS tolerance of alfalfa. The qRT-PCR further showed that the expression pattern was similar to the expression abundance in the transcriptome. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by temperature on plant growth and development, which provided the theoretical basis for breeding heat-resistant alfalfa.
Assuntos
Medicago sativa , Metabolômica , Transcriptoma , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/fisiologia , Perfilação da Expressão Gênica , Metaboloma , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Estresse Fisiológico/genética , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Resposta ao Choque Térmico/genéticaRESUMO
The prevalence of excessive drinking-related alcoholic liver disease (ALD) is rising, yet therapeutic options remain limited. High alcohol consumption and consequent oxidative metabolism by cytochrome P450 (CYP) can lead to extremely high levels of reactive oxygen species, which overwhelm cellular defenses and harm hepatocytes. Our previous investigations showed that inhibiting Cyp2e1 using RNA interference reduced the incidence of ALD. However, compensatory mechanisms other than CYP2E1 contribute to oxidative stress in the liver. Therefore, we coupled triple siRNA lipid nanoparticles (LNPs) targeting Cyp2e1 with two isoenzymes Cyp4a10 and Cyp4a14 to treat ALD mouse models fed with Lieber-Decarli ethanol liquid diet for 12 weeks at the early (1st week), middle (5th week), and late (9th week) stages. The administration of triple siRNA LNPs significantly ameliorated chronic alcoholic liver injury in mice, and early treatment achieved the most profound effects. These effects can be attributed to a reduction in oxidative stress and increased expression of antioxidant genes, including Gsh-Px, Gsh-Rd, and Sod1. Moreover, we observed the alleviation of inflammation, evidenced by the downregulation of Il-1ß, Il-6, Tnf-α, and Tgf-ß, and the prevention of excessive lipid synthesis, evidenced by the restoration of the expression of Srebp1c, Acc, and Fas. Finally, triple siRNA treatment maintained normal metabolism in lipid oxidation. In brief, our research examined the possible targets for clinical intervention in ALD by examining the therapeutic effects of triple siRNA LNPs targeting Cyp2e1, Cyp4a10, and Cyp4a14. The in vivo knockdown of the three genes in this study is suggested as a promising siRNA therapeutic approach for ALD.
RESUMO
Background: Alzheimer's disease (AD) is a neurodegenerative disorder caused by a complex interplay of various factors. However, a satisfactory cure for AD remains elusive. Pharmacological interventions based on drug targets are considered the most cost-effective therapeutic strategy. Therefore, it is paramount to search potential drug targets and drugs for AD. Objective: We aimed to provide novel targets and drugs for the treatment of AD employing transcriptomic data of AD and normal control brain tissues from a new perspective. Methods: Our study combined the use of a multi-layer perceptron (MLP) with differential expression analysis, variance assessment and molecular docking to screen targets and drugs for AD. Results: We identified the seven differentially expressed genes (DEGs) with the most significant variation (ANKRD39, CPLX1, FABP3, GABBR2, GNG3, PPM1E, and WDR49) in transcriptomic data from AD brain. A newly built MLP was used to confirm the association between the seven DEGs and AD, establishing these DEGs as potential drug targets. Drug databases and molecular docking results indicated that arbaclofen, baclofen, clozapine, arbaclofen placarbil, BML-259, BRD-K72883421, and YC-1 had high affinity for GABBR2, and FABP3 bound with oleic, palmitic, and stearic acids. Arbaclofen and YC-1 activated GABAB receptor through PI3K/AKT and PKA/CREB pathways, respectively, thereby promoting neuronal anti-apoptotic effect and inhibiting p-tau and Aß formation. Conclusions: This study provided a new strategy for the identification of targets and drugs for the treatment of AD using deep learning. Seven therapeutic targets and ten drugs were selected by using this method, providing new insight for AD treatment.
Assuntos
Doença de Alzheimer , Aprendizado Profundo , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Transcriptoma , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
Investigating oat tissue microflora during its different developmental stages is necessary for understanding its growth and anti-disease mechanism. In this study, 16S rDNA and ITS (Internally Transcribed Spacer) high-throughput sequencing technology were used to explore the microflora diversity of oat tissue. Twenty-seven samples of leaves, stems, and roots from three developmental stages, namely the seedling stage (SS), jointing stage (JS), and maturity stage (MS), underwent sequencing analysis. The analysis showed that 6480 operational taxonomic units (OTUs) were identified in the examined samples, of which 1698 were fungal and 4782 were bacterial. Furthermore, 126 OTUs were shared by fungi, mainly Ascomycota, Basidiomycota, and Mucoromycota at the phylum level, and 39 OTUs were shared by bacteria, mainly Actinobacteriota and Proteobacteria at the phylum level. The microbial diversity of oat tissue in the three developmental stages showed differences, and the α-diversity of the bacteria and ß-diversity of the bacteria and fungi in the roots were higher than those of the stems and leaves. Among the bacteria species, Thiiopseudomonas, Rikenellaceae RC9 gut group, and Brevibacterium were predominant in the leaves, MND1 was predominant in the roots, and Lactobacillus was predominant in the stems. Moreover, Brevibacterium maintained a stable state at all growth stages. In the fungal species, Phomatospora was dominant in the leaves, Kondoa was dominant in the roots, and Pyrenophora was dominant in the stems. All species with a high abundance were related to the growth process of oats and antagonistic bacteria. Furthermore, connection modules were denser in bacterial than in fungal populations. The samples were treated with superoxide dismutase and peroxidase. There were 42 strains associated with SOD (Superoxide dismutase), 60 strains associated with POD (Peroxidase), and 38 strains in total, which much higher than fungi. The network analysis showed that bacteria might have more dense connection modules than fungi, The number of bacterial connections to enzymes were much higher than that of fungi. Furthermore, these results provide a basis for further mechanistic research.
RESUMO
Electrocatalytic refinery from biomass-derived glycerol (GLY) to formic acid (FA), one of the most promising candidates for green H2 carriers, has driven widespread attention for its sustainability. Herein, we fabricated a series of monolithic Ni hydroxide-based electrocatalysts by a facile and in situ electrochemical method through the manipulation of local pH near the electrode. The as-synthesized Ni(OH)2@NF-1.0 affords a low working potential of 1.36 VRHE to achieve 100% GLY conversion, 98.5% FA yield, 96.1% faradaic efficiency and â¼0.13 A cm-2 of current density. Its high efficiency on a wide range of polyol substrates further underscores the promise of sustainable electro-refinery. Through a combinatory analysis via H2 temperature-programmed reduction, cyclic voltammetry and in situ Raman spectroscopy, the precise regulation of synthetic potential was discovered to be highly essential to controlling the content, phase composition and redox properties of Ni hydroxides, which significantly determine the catalytic performance. Additionally, the 'adsorption-activation' mode of ortho-di-hydroxyl groups during the C-C bond cleavage of polyols was proposed based on a series of probe reactions. This work illuminates an advanced path for designing non-noble-metal-based catalysts to facilitate electrochemical biomass valorization.
RESUMO
Background: Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective: We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods: We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results: We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76-0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion: We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.
RESUMO
In the face of the unprecedented public health crisis caused by the novel coronavirus pneumonia epidemic, front-line health workers are under enormous mental pressure. This paper aims to explore the mental health challenges faced by front-line health workers in the early stages of a public health emergency, such as stress, anxiety, and depression. At the same time, the factors that increase their mental stress are analyzed, and practical measures are put forward to prevent and manage mental health problems, aiming at improving the quality of medical treatment during public health emergencies. This paper has some reference value for people engaged in mental health prevention.
RESUMO
Hydrodesulfurization (HDS) is a commonly used route for producing clean fuels in modern refinery. Herein, ammonium/amine-intercalated MoS2 catalysts with various content of 1T phase and S vacancies have been successfully synthesized. Along with the increment of 1T phase and S vacancies of MoS2, the initial reaction rate of the HDS of dibenzothiophene (DBT) can be improved from 0.09 to 0.55 µmol·gcat-1·s-1, accounting for a remarkable activity compared to the-state-of-the-art catalysts. In a combinatory study via the activity evaluation and catalysts characterization, we found that the intercalation species of MoS2 played a key role in generating more 1T phase and S vacancies through the 'intercalation-deintercalation' processes, and the hydrogenation and desulfurization of HDS can be significantly promoted by 1T phase and S vacancies on MoS2, respectively. This study provides a practically meaningful guidance for developing more advanced HDS catalysts by the intercalated MoS2-derived materials with an in-depth understanding of structure-function relationships.
RESUMO
Catalytic upcycling of polyolefins into high-value chemicals represents the direction in end-of-life plastics valorization, but poses great challenges. Here, we report the synthesis of a tandem porous catalyst via a micelle cascade assembly strategy for selectively catalytic cracking of polyethylene into olefins at a low temperature. A hierarchically porous silica layer from mesopore to macropore is constructed on the surface of microporous ZSM-5 nanosheets through cascade assembly of dynamic micelles. The outer macropore arrays can adsorb bulky polyolefins quickly by the capillary and hydrophobic effects, enhancing the diffusion and access to active sites. The middle mesopores present a nanoconfinement space, pre-cracking polyolefins into intermediates by weak acid sites, which then transport into zeolites micropores for further cracking by strong Brønsted acid sites. The hierarchically porous and acidic structures, mimicking biomimetic protease catalytic clefts, ideally match the tandem cracking steps of polyolefins, thus suppressing coke formation and facilitating product escape. As a result, light hydrocarbons (C1-C7) are produced with a yield of 443â mmol gZSM-5 -1, where 74.3 % of them are C3-C6 olefins, much superior to ZSM-5 and porous silica catalysts. This tandem porous catalyst exemplifies a superstructure design of catalytic cracking catalysts for industrial and economical upcycling of plastic wastes.
RESUMO
Zeolite synthesis under acidic conditions has always presented a challenge. In this study, we successfully prepared series of ZSM-5 zeolite nanosheets (Z-5-SCA-X) over a broad pH range (4 to 13) without the need for additional supplements. This achievement was realized through aggregation crystallization of ZSM-5 zeolite subcrystal (Z-5-SC) with highly short-range ordering and ultrasmall size extracted from the synthetic system of ZSM-5 zeolite. Furthermore, the crystallization behavior of Z-5-SC was investigated, revealing its non-classical crystallization process under mildly alkaline and acidic conditions (pH<10), and the combination of classical and non-classical processes under strongly alkaline conditions (pH≥10). What's particularly intriguing is that, the silanol nest content in the resultant Z-5-SCA-X samples appears to be dependent on the pH values during the Z-5-SC crystallization process rather than its crystallinity. Finally, the results of the furfuryl alcohol etherification reaction demonstrate that reducing the concentration of silanol nests significantly enhances the catalytic performance of the Z-5-SCA-X zeolite. The ability to synthesize zeolite in neutral and acidic environments without the additional mineralizing agents not only broadens the current view of traditional zeolite synthesis but also provides a new approach to control the silanol nest content of zeolite catalysts.
RESUMO
As the backbone of the extracellular matrix (ECM) and the perineuronal nets (PNNs), hyaluronic acid (HA) provides binding sites for proteoglycans and other ECM components. Although the pivotal of HA has been recognized in Alzheimer's disease (AD), few studies have addressed the relationship between AD pathology and HA synthases (HASs). Here, HASs in different regions of AD brains were screened in transcriptomic database and validated in AßPP/PS1 mice. We found that HAS1 was distributed along the axon and nucleus. Its transcripts were reduced in AD patients and AßPP/PS1 mice. Phosphorylated tau (p-tau) mediates AßPP-induced cytosolic-nuclear translocation of HAS1, and negatively regulated the stability, monoubiquitination, and oligomerization of HAS1, thus reduced the synthesis and release of HA. Furthermore, non-ubiquitinated HAS1 mutant lost its enzyme activity, and translocated from the cytosol into the nucleus, forming nuclear speckles (NS). Unlike the splicing-related NS, less than 1 % of the non-ubiquitinated HAS1 co-localized with SRRM2, proving the regulatory role of HAS1 in gene transcription, indirectly. Thus, differentially expressed genes (DEGs) related to both non-ubiquitinated HAS1 mutant and AD were screened using transcriptomic datasets. Thirty-nine DEGs were identified, with 64.1 % (25/39) showing consistent results in both datasets. Together, we unearthed an important function of the AßPP-p-tau-HAS1 axis in microenvironment remodeling and gene transcription during AD progression, involving the ubiquitin-proteasome, lysosome, and NS systems.
Assuntos
Doença de Alzheimer , Núcleo Celular , Hialuronan Sintases , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Transcrição Gênica , Fosforilação , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos Transgênicos , UbiquitinaçãoRESUMO
Electrosynthesis of 2,5-furandicarboxylic acid (FDCA) from the biomass-derived 5-hydroxymethylfurfural (HMF) is one of the most potential means to produce a bioplastic monomer. Copper oxide (CuO) catalyst shows promising prospects due to its high surface activity, conductivity, and stability, but relatively poor capability of oxygen evolution; however, the weak adsorption of substrates and the lack of facile synthetic strategies largely restrict its practical application. Here, a novel facile in situ method, alternate cycle voltammetry (denoted as c) and potentiostatic electrolysis (denoted as p), was proposed to prepare a monolithic cpc-CuO/Cu-foam electrocatalyst. Along with the increment of CuO and its surficial oxygen vacancies (OV), the FDCA yield, productivity, and Faradaic efficiency can reach up to â¼98.5%, â¼0.2 mmol/cm2, and â¼94.5% under low potential of 1.404 VRHE. Such an efficient electrosynthesis system can be easily scaled up to afford pure FDCA powders. In a combinatory analysis via electron paramagnetic resonance spectroscopy, H2 temperature-programmed reduction, open circuit potential, infrared spectroscopy, zeta potential, electrochemical measurement, and theoretical calculation, we found that the CuO was the active phase and OV generated on CuO surface can dramatically enhance the adsorption of *HMF and *OH (* denotes an active site), accounting for its superior FDCA production. This work offers an excellent paradigm for enhancing biomass valorization on CuO catalysts by constructing surficial defects.
RESUMO
A series of novel urea derivatives were designed, synthesized and evaluated for their inhibitory activities against HT-29 cells, and structure-activity relationships (SAR) were summarized. Compound 10p stood out from these derivatives, exhibiting the most potent antiproliferative activity. Further biological studies demonstrated that 10p arrested cell cycle at G2/M phase via regulating cell cycle-related proteins CDK1 and Cyclin B1. The underlying molecular mechanisms demonstrated that 10p induced cell death through ferroptosis and autophagy, but not apoptosis. Moreover, 10p-induced ferroptosis and autophagy were both related with accumulation of ROS, but they were independent of each other. Our findings substantiated that 10p combines ferroptosis induction and autophagy trigger in single molecule, making it a potential candidate for colon cancer treatment and is worth further development.
Assuntos
Neoplasias do Colo , Ferroptose , Humanos , Divisão Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Autofagia , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Paper-based cultural relics experience irreversible aging and deterioration during long-term preservation. The most common process of paper degradation is the acid-catalyzed hydrolysis of cellulose. Nowadays, deacidification has been considered as a practical way to protect acidified literature; however, two important criteria of minimal intervention and reversibility should be considered. Inspired by the superior properties of bacterial cellulose (BC) and its structural similarity to paper, herein, the mineralized BC membranes are applied to deacidification and conservation of paper-based materials for the first time. Based on the enzyme-induced mineralization process, the homogeneous and high-loaded calcifications of hydroxyapatite (HAP) and calcium carbonate (CaCO3) nanoparticles onto the nanofibers of BC networks have been achieved, respectively. The size, morphology, structure of minerals, as well as the alkalinity and alkali reserve of BC membranes are well controlled by regulating enzyme concentration and mineralization time. Compared with HAP/CaCO3-immersed method, HAP/CaCO3-BC membranes show more efficient and sustained deacidification performance on paper. The weak alkalinity of mineralized BC membranes avoids the negative effect of alkali on paper, and the high alkali reserve implies a good sustained-release effect of alkali to neutralize the future generated acid. The multiscale nanochannels of the BC membrane provide ion exchange and acid/alkali neutralization channels between paper and the BC membrane, and the final pH of protected paper can be well stabilized in a certain range. Most importantly, this BC-deacidified method is reversible since the BC membrane can be removed without causing any damage to paper and the original structure and fiber morphology of paper are well preserved. In addition, the mineralized BC membrane provides excellent flame-retardant performance on paper thanks to its unique organic-inorganic composite structure. All of these advantages of the mineralized BC membrane indicate its potential use as an effective protection material for the reversible deacidification and preventive conservation of paper-based cultural relics.
Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Durapatita/química , ÁlcalisRESUMO
Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.
RESUMO
The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations. Furthermore, the couplings between these rotational parameters also exhibit a decline with increasing temperature, although the roll-twist coupling displays greater strength than the tilt-roll and tilt-twist couplings, attributed to its more robust correction component. We elucidated the influence of temperature on bend and twist elasticities based on the comparisons between various models and existing data.