Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.742
Filtrar
1.
World J Clin Cases ; 12(14): 2350-2358, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38765753

RESUMO

BACKGROUND: This study presents an evaluation of the computed tomography lymphangiography (CTL) features of lymphatic plastic bronchitis (PB) and primary chylothorax to improve the diagnostic accuracy for these two diseases. AIM: To improve the diagnosis of lymphatic PB or primary chylothorax, a retrospective analysis of the clinical features and CTL characteristics of 71 patients diagnosed with lymphatic PB or primary chylothorax was performed. METHODS: The clinical and CTL data of 71 patients (20 with lymphatic PB, 41 with primary chylothorax, and 10 with lymphatic PB with primary chylothorax) were collected retrospectively. CTL was performed in all patients. The clinical manifestations, CTL findings, and conventional chest CT findings of the three groups of patients were compared. The chi-square test or Fisher's exact test was used to compare the differences among the three groups. A difference was considered to be statistically significant when P < 0.05. RESULTS: (1) The percentages of abnormal contrast medium deposits on CTL in the three groups were as follows: Thoracic duct outlet in 14 (70.0%), 33 (80.5%) and 8 (80.0%) patients; peritracheal region in 18 (90.0%), 15 (36.6%) and 8 (80.0%) patients; pleura in 6 (30.0%), 33 (80.5%) and 9 (90.0%) patients; pericardium in 6 (30.0%), 6 (14.6%) and 4 (40.0%) patients; and hilum in 16 (80.0%), 11 (26.8%) and 7 (70.0%) patients; and (2) the abnormalities on conventional chest CT in the three groups were as follows: Ground-glass opacity in 19 (95.0%), 18 (43.9%) and 8 (80.0%) patients; atelectasis in 4 (20.0%), 26 (63.4%) and 7 (70.0%) patients; interlobular septal thickening in 12 (60.0%), 11 (26.8%) and 3 (30.0%) patients; bronchovascular bundle thickening in 14 (70.0%), 6 (14.6%) and 4 (40.0%) patients; localized mediastinal changes in 14 (70.0%), 14 (34.1%), and 7 (70.0%) patients; diffuse mediastinal changes in 6 (30.0%), 5 (12.2%), and 3 (30.0%) patients; cystic lesions in the axilla in 2 (10.0%), 6 (14.6%), and 2 (20.0%) patients; and cystic lesions in the chest wall in 0 (0%), 2 (4.9%), and 2 (4.9%) patients. CONCLUSION: CTL is well suited to clarify the characteristics of lymphatic PB and primary chylothorax. This method is an excellent tool for diagnosing these two diseases.

2.
Clin Chim Acta ; 560: 119729, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754575

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) fragmentomic characteristics are promising analytes with abundant physiological signals for non-invasive disease diagnosis and monitoring. Previous studies on plasma cfDNA fragmentomics commonly employed a two-step centrifugation process for removing cell debris, involving a low-speed centrifugation followed by a high-speed centrifugation. However, the effects of centrifugation conditions on the analysis of cfDNA fragmentome remain uncertain. METHODS: We collected blood samples from 10 healthy individuals and divided each sample into two aliquots for plasma preparation with one- and two-step centrifugation processes. We performed whole genome sequencing (WGS) of the plasma cfDNA in the two groups and comprehensively compared the cfDNA fragmentomic features. Additionally, we reanalyzed the fragmentomic features of cfDNA from 16 healthy individuals and 16 COVID-19 patients, processed through one- and two-step centrifugation in our previous study, to investigate the impact of centrifugation on disease signals. RESULTS: Our results showed that there were no significant differences observed in the characteristics of nuclear cfDNA, including size, motif diversity score (MDS) of end motifs, and genome distribution, between plasma samples treated with one- and two-step centrifugation. The cfDNA size shortening in COVID-19 patients was observed in plasma samples with one- and two-step centrifugation methods. However, we observed a significantly higher relative abundance and longer size of cell-free mitochondrial DNA (mtDNA) in the one-step samples compared to the two-step samples. This difference in mtDNA caused by the one- and two-step centrifugation methods surpasses the pathological difference between COVID-19 patients and healthy individuals. CONCLUSIONS: Our findings indicate that one-step low-speed centrifugation is a simple and potentially suitable method for analyzing nuclear cfDNA fragmentation characteristics. These results offer valuable guidance for cfDNA research in various clinical scenarios.

3.
Front Cardiovasc Med ; 11: 1376229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756752

RESUMO

Background: Catheter ablation is frequently used to manage recurrent atrial fibrillation (AF) resistant to drug therapy, with pulmonary vein isolation (PVI) as a key tactic. Pulsed field ablation (PFA) has emerged as an innovative technology for PVI but poses challenges for redo procedures. Case presentation: We report on a 73-year-old female patient who experienced recurrent AF after initial successful PVI using a novel PFA technology and subsequently underwent radiofrequency catheter ablation during a repeat intervention. The reconnection of pulmonary veins was discovered primarily in the anterior region of the right superior PV and the superior portion of the left superior PV. An anatomically-based segmental approach and larger circumferential PVI, followed by additional linear ablations at non-PV trigger sites, proved decisive in preventing further recurrence of atrial tachycardia. Conclusion: While PFA exhibits promise as a secure and efficient modality for PVI, it necessitates excellent contact quality to ensure lasting results. For patients experiencing AF recurrences post-PFI, expanded strategies incorporating both comprehensive PVI and linear ablations at targeted non-PV sites might enhance treatment outcomes.

4.
Phytomedicine ; 130: 155733, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38759314

RESUMO

BACKGROUND: The proinflammatory response induced by macrophages plays a crucial role in the development of sepsis and the resulting multiorgan dysfunction. Identifying new regulatory targets for macrophage homeostasis and devising effective treatment strategies remains a significant challenge in contemporary research. PURPOSE: This study aims to identify new regulatory targets for macrophage homeostasis and develop effective strategies for treating sepsis. STUDY DESIGN AND METHODS: Macrophage infiltration in septic patients and in lungs, kidneys, and brains of caecum ligation and puncture (CLP)-induced septic mice was observed using CIBERSORT and immunofluorescence (IF). Upon integrating the MSigDB database and GSE65682 dataset, differently expressed macrophage-associated genes (DEMAGs) were identified. Critical DEMAGs were confirmed through machine learning. The protein level of the critical DEMAG was detected in PBMCs of septic patients, RAW264.7 cells, and mice lungs, kidneys, and brains using ELISA, western blot, immunohistochemistry, and IF. siRNA was applied to investigate the effect of the critical DEMAG in RAW264.7 cells. A natural product library was screened to find a compound targeting the critical DEMAG protein. The binding of compounds and proteins was analyzed through molecular docking, molecular dynamics simulations, CETSA, and MST analysis. The therapeutic efficacy of the compounds against sepsis was then evaluated through in vitro and in vivo experiments. RESULTS: Macrophage infiltration was inversely correlated with survival in septic patients. The critical differentially expressed molecule RasGRP1 was frequently observed in the PBMCs of septic patients, LPS-induced RAW264.7 cells, and the lungs, kidneys, and brains of septic mice. Silencing RasGRP1 alleviated proinflammatory response and oxidative stress in LPS-treated RAW264.7 cells. Catechin Hydrate (CH) was identified as an inhibitor of RasGRP1, capable of maintaining macrophage homeostasis and mitigating lung, kidney, and brain damage during sepsis. CONCLUSION: This study demonstrates that RasGRP1, a novel activator of macrophage proinflammatory responses, plays a crucial role in the excessive inflammation and oxidative stress associated with sepsis. CH shows potential for treating sepsis by inhibiting RasGRP1.

5.
Phytomedicine ; 130: 155704, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759316

RESUMO

BACKGROUND: Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE: This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS: In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS: We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-ß. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-ß-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION: Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-ß-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38760189

RESUMO

BACKGROUND AND AIMS: Since the global burden of chronic kidney disease (CKD) is rising rapidly, the study aimed to assess the association of cardiovascular health (CVH) metrics with all-cause and cardiovascular disease (CVD) mortality among individuals with CKD. METHODS AND RESULTS: The cohort study included 5834 participants with CKD from the National Health and Nutrition Examination Survey 1999-2018. A composite CVH score was calculated based on smoking status, physical activity, body mass index, blood pressure, total cholesterol, diet quality, and glucose control. Primary outcomes were all-cause and CVD mortality as of December 31, 2019. Multivariable-adjusted Cox proportional hazards models were used to estimate the association between CVH metrics and deaths in CKD patients. During a median follow-up of 7.2 years, 2178 all-cause deaths and 779 CVD deaths were documented. Compared to participants with ideal CVH, individuals with intermediate CVH exhibited a 46.0% increase in all-cause mortality (hazard ratio, 1.46; 95% confidence interval: 1.17, 1.83), while those with poor CVH demonstrated a 101.0% increase (2.01; 1.54, 2.62). For CVD mortality, individuals with intermediate CVH experienced a 56.0% increase (1.56; 1.02, 2.39), and those with poor CVH demonstrated a 143.0% increase (2.43; 1.51, 3.91). Linear trends were noted for the associations of CVH with both all-cause mortality (P for trend <0.001) and CVD mortality (P for trend = 0.02). CONCLUSIONS: Lower CVH levels were associated with higher all-cause and CVD mortality in individuals with CKD, which highlights the importance of maintaining good CVH in CKD patients.

7.
Front Public Health ; 12: 1309673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774050

RESUMO

Objectives: Sarcopenia and disability represent significant concerns impacting the health of older people. This study aimed to explore the bidirectional relationship between sarcopenia and disability in Chinese older people. Methods: This study recruited older people ≥60 years old from the China Health and Retirement Longitudinal Study. In phase I, the study analyzed the relation between disability and subsequent sarcopenia using multinomial logistic regression models. Conversely, in phase II, the study assessed whether sarcopenia was associated with future disability using binary logistic regression models. Results: In phase I, 65 (16.80%) new cases of possible sarcopenia, 18 (4.65%) cases of sarcopenia, and 9 (2.33%) cases of severe sarcopenia were observed in the disabled older people and 282 (10.96%) new cases of possible sarcopenia, 97 (3.77%) cases of sarcopenia, 35 (1.36%) cases of severe sarcopenia were observed in the older people without disability. The OR (95% CI) for sarcopenia in older disabled individuals compared to those without disability was 1.61 (1.25-2.07). Adjusting for all covariates in 2011, the OR (95% CI) value for disabled individuals vs. those without disability was 1.35 (1.02-1.79). Subgroup analyses showed that disabled participants aged < 80 years were more likely to have sarcopenia (OR = 1.42, 95% CI: 1.07-1.89), and the risk of sarcopenia did not differ significantly between sex subgroups. In phase II, 114 cases (33.83%) in the possible sarcopenia patients, 85 cases (28.91%) in the sarcopenia patients, 23 cases (35.94%) in the severe sarcopenia patients, and 501 cases (16.10%) in the individuals without sarcopenia showed symptoms of disability. The OR (95% CI) for disability was 2.66 (2.08-3.40) in the possible sarcopenia patients, 2.12 (1.62-2.77) in the sarcopenia patients, and 2.92 (1.74-4.91) in the severe sarcopenia patients compared with the no sarcopenia patients. After adjusting for all covariates in 2011, the OR (95% CI) values were 2.21 (1.70-2.85) in the possible sarcopenia patients, 1.58 (1.14-2.19) in the sarcopenia patients, and 1.99 (1.14-3.49) in the severe sarcopenia patients, as compared to the older people without sarcopenia. Subgroup analyses showed that compared with men, women with possible sarcopenia had a higher risk of disability (OR = 2.80, 95% CI: 1.98-3.97). In addition, participants aged < 80 years with sarcopenia or severe sarcopenia s were more likely to have disability (OR = 2.13, 95% CI: 1.52-2.98; OR = 2.98, 95% CI: 1.60-5.54). Conclusion: The occurrence of disability increase the risk of sarcopenia in the older people, and baseline sarcopenia predicts the future disability in older people.


Assuntos
Pessoas com Deficiência , Sarcopenia , Humanos , Sarcopenia/epidemiologia , Sarcopenia/complicações , Masculino , Estudos Longitudinais , China/epidemiologia , Feminino , Idoso , Pessoas com Deficiência/estatística & dados numéricos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fatores de Risco , Modelos Logísticos
8.
Front Microbiol ; 15: 1383953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774506

RESUMO

The rapid emergence of invasive infections caused by azole-resistant Candida tropicalis has become a public health concern, and there is an urgent need for alternative treatment strategies. Studies have demonstrated the antibacterial effects of nisin, a well-known peptide naturally produced by Lactococcus lactis subsp. lactis. However, there is scant information about the antifungal effect of nisin against C. tropicalis. The present study aims to investigate the in vitro antifungal activity of nisin against clinical isolates of azole-resistant C. tropicalis strains, as well as its inhibitory effect on biofilm formation. A total of 35 C. tropicalis strains isolated from patients with invasive fungal infections were divided into the azole-resistant group and the azole-sensitive group, containing 21 and 14 strains, respectively. The relative expression levels of the ERG11 and UPC2 genes in the azole-resistant group were higher than those in the azole-sensitive group (p < 0.0001), while no significant differences were observed in the expression levels of the MDR1 and CDR1 genes. The minimum inhibitory concentration of nisin against C. tropicalis ranged from 2 to 8 µg/mL. Nisin treatment inhibited the growth of azole-resistant C. tropicalis, with over a four-fold reduction in OD600 nm values observed at the 8-h time point, while it promoted the transition of C. tropicalis from the spore phase to the hyphal phase, as observed on cryo-scanning electron microscopy. The results of biofilm quantification using crystal violet staining indicated a significant decrease in OD570 nm values in the nisin-treated group compared to the controls (p < 0.0001). Among the 21 azole-resistant C. tropicalis strains, the biofilm formation was inhibited in 17 strains (17/21, 81%), and more than 85% inhibition of biofilm formation was observed in the representative strains. With regard to the molecular mechanisms, the expression of the BCR1 and UPC2 genes in the azole-resistant strains was down-regulated on nisin treatment (p < 0.05). In conclusion, we demonstrated, for the first time, that nisin has antifungal activity and significant anti-biofilm activity against clinical isolates of azole-resistant C. tropicalis strains. Based on the findings, nisin could be a promising alternative antifungal agent for combating azole-resistant C. tropicalis infections.

9.
J Neuroimmune Pharmacol ; 19(1): 23, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775885

RESUMO

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1ß, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.


Assuntos
Hipocampo , Kernicterus , Microglia , Minociclina , Neurogênese , Animais , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Minociclina/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Inflamação/metabolismo , Inflamação/patologia , Doenças Neuroinflamatórias/tratamento farmacológico
10.
Sci Rep ; 14(1): 11585, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773195

RESUMO

High-altitude cerebral edema (HACE) is a severe neurological condition that can occur at high altitudes. It is characterized by the accumulation of fluid in the brain, leading to a range of symptoms, including severe headache, confusion, loss of coordination, and even coma and death. Exosomes play a crucial role in intercellular communication, and their contents have been found to change in various diseases. This study analyzed the metabolomic characteristics of blood exosomes from HACE patients compared to those from healthy controls (HCs) with the aim of identifying specific metabolites or metabolic pathways associated with the development of HACE conditions. A total of 21 HACE patients and 21 healthy controls were recruited for this study. Comprehensive metabolomic profiling of the serum exosome samples was conducted using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the metabolic pathways affected in HACE patients. Twenty-six metabolites, including ( +)-camphoric acid, choline, adenosine, adenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside, among others, exhibited significant changes in expression in HACE patients compared to HCs. Additionally, these differentially abundant metabolites were confirmed to be potential biomarkers for HACE. KEGG pathway enrichment analysis revealed several pathways that significantly affect energy metabolism regulation (such as purine metabolism, thermogenesis, and nucleotide metabolism), estrogen-related pathways (the estrogen signaling pathway, GnRH signaling pathway, and GnRH pathway), cyclic nucleotide signaling pathways (the cGMP-PKG signaling pathway and cAMP signaling pathway), and hormone synthesis and secretion pathways (renin secretion, parathyroid hormone synthesis, secretion and action, and aldosterone synthesis and secretion). In patients with HACE, adenosine, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside were negatively correlated with height. Deoxyguanosine 5'-monophosphate is negatively correlated with weight and BMI. Additionally, LPE (18:2/0:0) and pregnanetriol were positively correlated with age. This study identified potential biomarkers for HACE and provided valuable insights into the underlying metabolic mechanisms of this disease. These findings may lead to potential targets for early diagnosis and therapeutic intervention in HACE patients.


Assuntos
Biomarcadores , Edema Encefálico , Exossomos , Metabolômica , Humanos , Masculino , Feminino , Adulto , Metabolômica/métodos , Edema Encefálico/sangue , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Biomarcadores/sangue , Exossomos/metabolismo , Espectrometria de Massas em Tandem , Doença da Altitude/sangue , Doença da Altitude/metabolismo , Pessoa de Meia-Idade , Redes e Vias Metabólicas , Metaboloma , Estudos de Casos e Controles , Altitude
11.
Genes Genomics ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776049

RESUMO

BACKGROUND: Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE: To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS: The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS: eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION: The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.

12.
Anal Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770656

RESUMO

Developing a specific, sensitive, rapid, and on-site method for detecting pathogenic bacteria in food samples is critical to ensuring public safety. This article demonstrates a CRISPR/Cas13a system and a chemiluminescence resonance energy transfer (CRET) (CRISPR/Cas 13a-assisted CRET)-based strategy for sensitive and on-site detection of pathogenic bacteria in real samples. Once the hybrid double strand of aptamerS. aureus-cRNA recognizes the target model bacteria of Staphylococcus aureus (S. aureus), the released cRNA would bind with CRISPR/Cas 13a to form a complex of cRNA-CRISPR/Cas 13a, which could cleave the RNA molecule in the detecting probe of horseradish peroxidase (HRP) modified-gold nanoparticles (AuNPs) linked by RNA (AuNPs-RNA-HRP), resulting in an enhanced chemiluminescence signal due to the CRET "OFF" phenomenon after introducing the chemiluminescence substrate of luminol. The CRISPR/Cas 13a-assisted CRET strategy successfully detected S. aureus in drinking water and milk with detection limits of 20 and 30 cfu/mL, respectively, within the recovery of 90.07-105.50%. Furthermore, after integrating with an immunochromatographic test strip (ICTS), the CRISPR/Cas 13a-assisted CRET strategy achieved the on-site detection of as low as 102 cfu/mL of S. aureus in drinking water and milk via a smartphone, which is about 10 times lower than that in the previously reported AuNPs-based colorimetric ICTS, demonstrating a convenient and sensitive detection method for S. aureus in real samples.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38770801

RESUMO

Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and ROS homeostasis. Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors.

14.
Langmuir ; 40(20): 10814-10824, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723195

RESUMO

Morphology regulation is an effective strategy for improving the sensor sensitivity of transition metal oxide nanostructures. In this work, SnO2 with three different morphologies (nanorods, nanoparticles, and nanopillars) has been synthesized by a simple one-step solvothermal process with the addition of various solute ratios at 180 °C for 6 h for detecting formaldehyde (HCHO) at the optimum working temperature of 320 °C. Compared to nanorods and nanopillars, the created SnO2 nanoparticles exhibit a much faster response time and sensitivity than other samples, showing the fastest recovery time (18 s) with the highest sensitivity of 6-100 ppm of the HCHO gas. The sensing mechanism of the sensors is investigated by Brunauer-Emmett-Teller (BET) methods and X-ray photoelectron spectroscopy (XPS) analysis, revealing that the pore size distribution and amount of OV and OC improve the charge transfer and HCHO adsorption of nanoparticle sensors. Such an effect of morphology control on sensing performance paves an idea for the development of different structure-based HCHO sensors.

15.
BMC Med ; 22(1): 188, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715068

RESUMO

BACKGROUND: Floods are the most frequent weather-related disaster, causing significant health impacts worldwide. Limited studies have examined the long-term consequences of flooding exposure. METHODS: Flood data were retrieved from the Dartmouth Flood Observatory and linked with health data from 499,487 UK Biobank participants. To calculate the annual cumulative flooding exposure, we multiplied the duration and severity of each flood event and then summed these values for each year. We conducted a nested case-control analysis to evaluate the long-term effect of flooding exposure on all-cause and cause-specific mortality. Each case was matched with eight controls. Flooding exposure was modelled using a distributed lag non-linear model to capture its nonlinear and lagged effects. RESULTS: The risk of all-cause mortality increased by 6.7% (odds ratio (OR): 1.067, 95% confidence interval (CI): 1.063-1.071) for every unit increase in flood index after confounders had been controlled for. The mortality risk from neurological and mental diseases was negligible in the current year, but strongest in the lag years 3 and 4. By contrast, the risk of mortality from suicide was the strongest in the current year (OR: 1.018, 95% CI: 1.008-1.028), and attenuated to lag year 5. Participants with higher levels of education and household income had a higher estimated risk of death from most causes whereas the risk of suicide-related mortality was higher among participants who were obese, had lower household income, engaged in less physical activity, were non-moderate alcohol consumers, and those living in more deprived areas. CONCLUSIONS: Long-term exposure to floods is associated with an increased risk of mortality. The health consequences of flooding exposure would vary across different periods after the event, with different profiles of vulnerable populations identified for different causes of death. These findings contribute to a better understanding of the long-term impacts of flooding exposure.


Assuntos
Inundações , Humanos , Inundações/mortalidade , Estudos de Casos e Controles , Reino Unido/epidemiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Adulto , Causas de Morte , Fatores de Risco
16.
17.
Foods ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731713

RESUMO

Ionizing radiation has its unique popularity as a non-thermal decontamination technique treating with protein-rich foodstuffs to ensure the microbial and sensory quality, particularly for shell eggs. However, the changes in the functional properties of egg protein fractions such as liquid egg white (LEW) with macro/microstructural information are still controversial. Hence, this study was designed to elaborate the foaming and heat-set gelation functionality of LEW following different γ-ray irradiation dose treatments (0, 1, 3 or 5 kGy). For such, the physicochemical properties (active sulfhydryl and the hydrophobicity of protein moieties), structural characteristics (through X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry) and interfacial activities (rheological viscosity, interfacial tension, microrheological performance) were investigated. Then, the thermal gelation of LEW in relation to the texture profile and microstructure (by means of a scanning electron microscope) was evaluated followed by the swelling potency analysis of LEW gel in enzyme-free simulated gastric juice. The results indicated that irradiation significantly increased the hydrophobicity of liquid egg white proteins (LEWPs) (p < 0.05) by exposing non-polar groups and the interfacial rearrangement from a ß-sheet to linear and smaller crystal structure, leading to an enhanced foaming capacity. Microstructural analysis revealed that the higher dose irradiation (up to 5 kGy) could promote the proteins' oxidation of LEW alongside protein aggregates formed in the amorphous region, which favored heat-set gelation. As evidenced in microrheology, ≤3 kGy irradiation provided an improved viscoelastic interface film of LEW during gelatinization. Particularly, the LEW gel treated with 1 kGy irradiation had evident swelling resistance during the times of acidification at pH 1.2. These results gave new insight into the irradiation-assisted enhancement of foaming and heat-set gelation properties of LEW.

18.
Plants (Basel) ; 13(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732488

RESUMO

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

19.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732732

RESUMO

Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.

20.
Heliyon ; 10(9): e30433, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737233

RESUMO

Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA