Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443312

RESUMO

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

2.
J Ethnopharmacol ; 270: 113646, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33264659

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a classic herbal prescription, Huanglian Jiedu Decoction (HLJDD) exhibits positive effects against cardiac dysfunction. However, its cardioprotective effects and potential mechanism(s) of action still need to be systematically investigated. AIM OF THE STUDY: This study aimed to reveal the underlying therapeutic mechanism of HLJDD on transverse aortic constriction (TAC)-induced pathological cardiac hypertrophy and remodeling. MATERIALS AND METHODS: TAC-induced cardiac hypertrophy and remodeling mice model was established to evaluate the therapeutic effects of HLJDD. Serum untargeted metabolomics and lipidomic profiling were performed using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry coupled with multivariate statistical analyses. RESULTS: Oral administration of HLJDD (2.5 g/kg/day, 5.0 g/kg/day) significantly improved the heart morphology, enhanced the heart function, and alleviated the accumulation of fibrosis in the interstitial space and the infiltration of inflammatory cells in TAC-stimulated mice. Serum untargeted metabolomics analysis showed that significant alterations were observed in metabolic signatures between the TAC-model and sham group. Principal component analysis and orthogonal partial least-squares discriminant analysis screened 59 differential metabolic features and 13 metabolites were identified. The disturbed metabolic pathways in TAC group mainly related to lipid metabolism. Further serum lipidomic profiling showed that most lipids including cholesterol esters, ceramides, glycerides, fatty acids and phospholipids were decreased in TAC group and these alterations were reversed after HLJDD intervention. CONCLUSION: HLJDD alleviates TAC-induced pathological cardiac hypertrophy and remodeling, and its potential therapeutic mechanism involves the regulation of lipid metabolism.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Remodelamento Atrial/efeitos dos fármacos , Cardiomegalia/sangue , Cardiomegalia/patologia , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica , Camundongos Endogâmicos C57BL , Subunidade p50 de NF-kappa B/metabolismo , Remodelação Ventricular/efeitos dos fármacos
3.
Front Cell Dev Biol ; 8: 800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134289

RESUMO

Temporal lobe epilepsy (TLE) is a severe chronic neurological disease caused by abnormal discharge of neurons in the brain and seriously affect the long-term life quality of patients. Currently, new insights into the pathogenesis of TLE are urgently needed to provide more personalized and effective therapeutic strategies. Accumulating evidence suggests that sphingosine kinase 1 (SphK1)/sphingosine 1-phosphate receptor 2 (S1PR2) signaling pathway plays a pivotal role in central nervous system (CNS) diseases. However, the precise altered expression of SphK1 and S1PR2 in TLE is remaining obscure. Here, we have confirmed the expression of SphK1 and S1PR2 in the pilocarpine-induced epileptic rat hippocampus and report for the first time the expression of SphK1 and S1PR2 in the temporal cortex of TLE patients. We found an increased expression of SphK1 in the brain from both epileptic rats and TLE patients. Conversely, S1PR2 expression level was markedly decreased. We further investigated the localization of SphK1 and S1PR2 in epileptic brains. Our study showed that both SphK1 and S1PR2 co-localized with activated astrocytes and neurons. Surprisingly, we observed different subcellular localization of SphK1 and S1PR2 in epileptic brain specimens. Taken together, our study suggests that the alteration of the SphK1/S1PR2 signaling axis is closely associated with the course of TLE and provides a new target for the treatment of TLE.

4.
Front Neurol ; 11: 475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655475

RESUMO

Tuberous sclerosis complex (TSC) is a genetic disease characterized by seizures, mental deficiency, and abnormalities of the skin, brain, kidney, heart, and lungs. TSC is inherited in an autosomal dominant manner and is caused by variations in either the TSC1 or TSC2 gene. TSC-related epilepsy (TRE) is the most prevalent and challenging clinical feature of TSC, and more than half of the patients have refractory epilepsy. In clinical practice, we found several patients of intractable epilepsy caused by TSC1 truncating mutations. To study the changes of protein expression in the brain, three cases of diseased brain tissue with TSC1 truncating mutation resected in intractable epilepsy operations and three cases of control brain tissue resected in craniocerebral trauma operations were collected to perform protein spectrum detection, and then the data-independent acquisition (DIA) workflow was used to analyze differentially expressed proteins. As a result, there were 55 up- and 55 down-regulated proteins found in the damaged brain tissue with TSC1 mutation compared to the control. Further bioinformatics analysis revealed that the differentially expressed proteins were mainly concentrated in the synaptic membrane between the patients with TSC and the control. Additionally, TSC1 truncating mutations may affect the pathway of amino acid metabolism. Our study provides a new idea to explore the brain damage mechanism caused by TSC1 mutations.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(9): 2053-7, 2008 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19093559

RESUMO

Palladium colloid was obtained via laser ablation under 1064 nm excitation from an Nd:YAG laser in redistilled deionized water. The Pd colloid consisted of "chemically pure" Pd nanoparticles, which were free from extraneous ions or other chemicals since no chemical reaction was involved in the preparation. There was no characteristic peak in UV/Vis spectrum of Pd colloid in the region of 200-800 nm. Hence, in contrast to the Au and Ag nanoparticles, the average size and the size distribution of the Pd nanoparticles could not be estimated from their UV/Vis adsorption spectral features. After the laser ablation, one drop (50 microL) of Pd colloid was deposited on the aluminum plate and dried naturally to form the Pd island films. This method resulted in the formation of a rough surface with a large number of separated Pd islands 20 microm in diameter. According to the SEM measurement, Pd nanoparticles with the average diameter of approximately 200 nm formed Pd island films. Surface-enhanced Raman scattering (SERS) activity of Pd colloid and Pd island films was evaluated by using 4-mercaptopyridine (4MPY) as a probe molecule. The SERS study revealed that Pd island film was a highly efficient SERS-active substrate while there was no SERS signal observed from Pd colloid. The surface enhancement factor of Pd island films for 4MPY was estimated, which could reach values as high as 8. 7 X 10(4) under 632.8 nm excitation. This value was comparable with the largest value of 10(4) cited in the literature. The SERS spectra of 4MPY molecules adsorbed on Pd surface showed that 4MPY molecules probably tilted from the Pd nanoparticle surface-via sulphur. By contrast, SERS spectrum of 4MPY adsorbed on Ag island films was recorded and analysed. From SERS data it was inferred that 4MPY molecules assumed the standing up orientation on the silver nanoparticle surface. It could be concluded that the 4MPY molecules were more perpendicular to the silver nanoparticle surface than to the Pd nanoparticle surface.

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(12): 2005-8, 2005 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-16544493

RESUMO

The vibrational spectra of thymine were predicted by density functional theory (DFT). In the calculation B3LYP complex function, and diffuse function and polarization function were added to heavy atoms and light atoms. Taking the effects of H-bonds into consideration, the authors added two water molecules in our calculation and simulated the case of forming H-bonds in crystal thymine. Whilst the Raman and infrared spectra of thymine were recorded, and the spectra of thymine calculated from DFT agree with the experimental results. The calculation results in the present paper are more approximate to the experimental data than ever reported. The vibrational modes of thymine were assigned.


Assuntos
Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Timina/análise , Cristalização , Ligação de Hidrogênio , Estrutura Molecular , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA