Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Front Cell Dev Biol ; 12: 1376814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694818

RESUMO

The pivotal role of FGF18 in the regulation of craniofacial and skeletal development has been well established. Previous studies have demonstrated that mice with deficiency in Fgf18 exhibit severe craniofacial dysplasia. Recent clinical reports have revealed that the duplication of chromosome 5q32-35.3, which encompasses the Fgf18 gene, can lead to cranial bone dysplasia and congenital craniosynostosis, implicating the consequence of possible overdosed FGF18 signaling. This study aimed to test the effects of augmented FGF18 signaling by specifically overexpressing the Fgf18 gene in cranial neural crest cells using the Wnt1-Cre;pMes-Fgf18 mouse model. The results showed that overexpression of Fgf18 leads to craniofacial abnormalities in mice similar to the Pierre Robin sequence in humans, including abnormal tongue morphology, micrognathia, and cleft palate. Further examination revealed that elevated levels of Fgf18 activated the Akt and Erk signaling pathways, leading to an increase in the proliferation level of tongue tendon cells and alterations in the contraction pattern of the genioglossus muscle. Additionally, we observed that excessive FGF18 signaling contributed to the reduction in the length of Meckel's cartilage and disrupted the development of condylar cartilage, ultimately resulting in mandibular defects. These anomalies involve changes in several downstream signals, including Runx2, p21, Akt, Erk, p38, Wnt, and Ihh. This study highlights the crucial role of maintaining the balance of endogenous FGF18 signaling for proper craniofacial development and offers insights into potential formation mechanisms of the Pierre Robin sequence.

2.
Commun Biol ; 7(1): 385, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553636

RESUMO

Shox2 plays a vital role in the morphogenesis and physiological function of the sinoatrial node (SAN), the primary cardiac pacemaker, manifested by the formation of a hypoplastic SAN and failed differentiation of pacemaker cells in Shox2 mutants. Shox2 and Nkx2-5 are co-expressed in the developing SAN and regulate the fate of the pacemaker cells through a Shox2-Nkx2-5 antagonistic mechanism. Here we show that simultaneous inactivation of Nkx2-5 in the SAN of Shox2 mutants (dKO) rescued the pacemaking cell fate but not the hypoplastic defects, indicating uncoupling of SAN cell fate determination and morphogenesis. Single-cell RNA-seq revealed that the presumptive SAN cells of Shox2-/- mutants failed to activate pacemaking program but remained in a progenitor state preceding working myocardium, while both wildtype and dKO SAN cells displayed normal pacemaking cell fate with similar cellular state. Shox2 thus acts as a safeguard but not a determinant to ensure the pacemaking cell fate through the Shox2-Nkx2-5 antagonistic mechanism, which is segregated from its morphogenetic regulatory function in SAN development.


Assuntos
Proteínas de Homeodomínio , Nó Sinoatrial , Proteínas de Homeodomínio/metabolismo , Nó Sinoatrial/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Morfogênese
3.
J Pathol ; 262(3): 320-333, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108121

RESUMO

Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Enfisema , Enfisema Pulmonar , Camundongos , Animais , Humanos , Enfisema Pulmonar/genética , Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , Transdução de Sinais/fisiologia , Enfisema/metabolismo , Proteína Smad1/genética , Proteína Smad1/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(10): e2201504120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36867684

RESUMO

The slow-evolving invertebrate amphioxus has an irreplaceable role in advancing our understanding of the vertebrate origin and innovations. Here we resolve the nearly complete chromosomal genomes of three amphioxus species, one of which best recapitulates the 17 chordate ancestor linkage groups. We reconstruct the fusions, retention, or rearrangements between descendants of whole-genome duplications, which gave rise to the extant microchromosomes likely existed in the vertebrate ancestor. Similar to vertebrates, the amphioxus genome gradually establishes its three-dimensional chromatin architecture at the onset of zygotic activation and forms two topologically associated domains at the Hox gene cluster. We find that all three amphioxus species have ZW sex chromosomes with little sequence differentiation, and their putative sex-determining regions are nonhomologous to each other. Our results illuminate the unappreciated interspecific diversity and developmental dynamics of amphioxus genomes and provide high-quality references for understanding the mechanisms of chordate functional genome evolution.


Assuntos
Anfioxos , Animais , Cromatina , Cromossomos Sexuais , Rearranjo Gênico , Família Multigênica
5.
Front Microbiol ; 14: 1016872, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910172

RESUMO

The intestinal microbiota and fecal metabolome have been shown to play a vital role in human health, and can be affected by genetic and environmental factors. We found that individuals with Down syndrome (DS) had abnormal serum cytokine levels indicative of a pro-inflammatory environment. We investigated whether these individuals also had alterations in the intestinal microbiome. High-throughput sequencing of bacterial 16S rRNA gene in fecal samples from 17 individuals with DS and 23 non-DS volunteers revealed a significantly higher abundance of Prevotella, Escherichia/Shigella, Catenibacterium, and Allisonella in individuals with DS, which was positively associated with the levels of pro-inflammatory cytokines. GC-TOF-MS-based fecal metabolomics identified 35 biomarkers (21 up-regulated metabolites and 14 down-regulated metabolites) that were altered in the microbiome of individuals with DS. Metabolic pathway enrichment analyses of these biomarkers showed a characteristic pattern in DS that included changes in valine, leucine, and isoleucine biosynthesis and degradation; synthesis and degradation of ketone bodies; glyoxylate and dicarboxylate metabolism; tyrosine metabolism; lysine degradation; and the citrate cycle. Treatment of mice with fecal bacteria from individuals with DS or Prevotella copri significantly altered behaviors often seen in individuals with DS, such as depression-associated behavior and impairment of motor function. These studies suggest that changes in intestinal microbiota and the fecal metabolome are correlated with chronic inflammation and behavior disorders associated with DS.

6.
Clin Oral Investig ; 27(6): 2875-2885, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36735089

RESUMO

OBJECTIVES: This study aims to investigate the anti-inflammatory effect of curcumin and underlying mechanisms regarding the modulation of the nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS: The impact of curcumin on the viability of hDPSCs was evaluated. The effect of curcumin on the expression of IL-1ß and NLRP3 in hDPSCs stimulated by lipopolysaccharide (LPS) was assessed. Then, LPS-primed hDPSCs were pre-treated with curcumin before ATP triggering NLRP3 inflammasome activation, and NLRP3 inflammasome-related mediators were assessed. The mechanism of curcumin inactivation of LPS plus ATP-induced inflammasome associated with NF-κB pathway was explored. The NF-κB pathway related pro-inflammatory mediators at mRNA and protein levels were evaluated. The expression of NF-κB p65 and phosphorylation p65 was visualized after curcumin or NF-κB inhibitor administrating respectively in hDPSCs with an activated NLRP3 inflammasome. Statistical analysis was performed. RESULTS: While curcumin at the concentration of 0.5-5 µM showed no obvious impact on the viability of hDPSCs, it significantly decreased IL-1ß and NLRP3 mRNA expression in LPS-induced hDPSCs in a dose-dependent manner. Curcumin significantly inhibited the LPS plus ATP-primed NLRP3 inflammasome activation in hDPSCs (NLRP3, ASC, caspase-1, and IL-1ß). Curcumin evidently attenuated the LPS plus ATP-induced expression of NF-κB pathway-related pro-inflammatory mediators (IL-6, IL-8, TNF-α, and COX-2). Furthermore, curcumin effectively reduced p65 phosphorylation, which acts as an NF-κB inhibitor in hDPSCs with an activated NLRP3 inflammasome. CONCLUSIONS: Curcumin pre-treatment may exert an anti-inflammatory role via inactivation of the NLRP3 inflammasome by inhibiting NF-κB p65 phosphorylation in cultured hDPSCs. CLINICAL RELEVANCE: Curcumin may have therapeutic potential in pulp inflammation.


Assuntos
Curcumina , Inflamassomos , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Curcumina/farmacologia , Fosforilação , Polpa Dentária/metabolismo , Mediadores da Inflamação , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Células-Tronco/metabolismo
7.
Front Physiol ; 13: 823275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211032

RESUMO

Bone morphogenetic protein (BMP) signaling plays essential roles in the regulation of early tooth development. It is well acknowledged that extracellular BMP ligands bind to the type I and type II transmembrane serine/threonine kinase receptor complexes to trigger the BMP signaling pathway. Then, the receptor-activated Smad1/5/8 in cytoplasm binds to Smad4, the central mediator of the canonical BMP signaling pathway, to form transfer complexes for entering the nucleus and regulating target gene expression. However, a recent study revealed the functional operation of a novel BMP-mediated signaling pathway named the atypical BMP canonical signaling pathway in mouse developing tooth, which is Smad1/5/8 dependent but Smad4 independent. In this study, we investigated whether this atypical BMP canonical signaling is conserved in human odontogenesis. We showed that pSMAD1/5/8 is required for the expression of Msh homeobox 1 (MSX1), a well-defined BMP signaling target gene, in human dental mesenchyme, but the typical BMP canonical signaling is in fact not operating in the early human developing tooth, as evidenced by the absence of pSMAD1/5/8-SMAD4 complexes in the dental mesenchyme and translocation of pSMAD1/5/8, and the expression of MSX1 induced by BMP4 is mothers against decapentaplegic homolog 4 (SMAD4)-independent in human dental mesenchymal cells. Moreover, integrative analysis of RNA-Seq data sets comparing the transcriptome profiles of human dental mesenchymal cells with and without SMAD4 knockdown by siRNA displays unchanged expression profiles of pSMAD1/5/8 downstream target genes, further affirming the functional operation of the atypical canonical BMP signaling pathway in a SMAD1/5/8-dependent but SMAD4-independent manner in the dental mesenchyme during early odontogenesis in humans.

8.
Nat Commun ; 13(1): 944, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177601

RESUMO

The karyotype of most birds has remained considerably stable during more than 100 million years' evolution, except for some groups, such as parrots. The evolutionary processes and underlying genetic mechanism of chromosomal rearrangements in parrots, however, are poorly understood. Here, using chromosome-level assemblies of four parrot genomes, we uncover frequent chromosome fusions and fissions, with most of them occurring independently among lineages. The increased activities of chromosomal rearrangements in parrots are likely associated with parrot-specific loss of two genes, ALC1 and PARP3, that have known functions in the repair of double-strand breaks and maintenance of genome stability. We further find that the fusion of the ZW sex chromosomes and chromosome 11 has created a pair of neo-sex chromosomes in the ancestor of parrots, and the chromosome 25 has been further added to the sex chromosomes in monk parakeet. Together, the combination of our genomic and cytogenetic analyses characterizes the complex evolutionary history of chromosomal rearrangements and sex chromosomes in parrots.


Assuntos
Evolução Molecular , Papagaios/genética , Cromossomos Sexuais/genética , Animais , Coloração Cromossômica , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Feminino , Rearranjo Gênico , Instabilidade Genômica , Cariótipo , Cariotipagem , Filogenia , Poli(ADP-Ribose) Polimerases/genética , Sintenia
9.
J Genet Genomics ; 49(1): 40-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500094

RESUMO

The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes, and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrated that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo, and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Dente , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Camundongos , Odontogênese/genética , Transdução de Sinais , Germe de Dente
10.
Front Cell Dev Biol ; 9: 647165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178981

RESUMO

Palate-derived growth factor receptor α (Pdgfrα) signaling has been reported to play important roles in the cardiac development. A previous study utilizing Pdgfrα conventional knockout mice reported hypoplasia of the sinus venous myocardium including the sinoatrial node (SAN) accompanied by increased expression of Nkx2.5. This mouse line embryos die by E11.5 due to embryonic lethality, rendering them difficult to investigate the details. To elucidate the underlying mechanism, in this study, we revisited this observation by generation of specific ablation of Pdgfrα in the SAN by Shox2-Cre at E9.5, using a Shox2-Cre;Pdgfrα flox/flox conditional mouse line. Surprisingly, we found that resultant homozygous mutant mice did not exhibit any malformation in SAN morphology as compared to their wild-type littermates. Further analysis revealed the normal cardiac function in adult mutant mice assessed by the record of heart rate and electrocardiogram and unaltered expression of Nkx2.5 in the E13.5 SAN of Pdgfrα conditional knockout mice. Our results unambiguously demonstrate that Pdgfrα is dispensable for SAN development after its fate commitment in mice.

11.
J Mol Histol ; 52(4): 651-659, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34076834

RESUMO

Tongue muscles are derived from mesodermal cells, while signals driven by cranial neural crest cells (CNCCs) regulate tongue myogenesis via tissue-tissue interaction. Based on such mechanisms of interaction, congenital tongue defects occur in CNC-related syndromes in humans. This study utilized a pathologic model for the syndrome of congenital bony syngnathia, Wnt1-Cre;pMes-Bmp4 mouse line, to explore impacts of enhanced CNCCs-originated BMP4 signal on tongue myogenesis via tissue-tissue interaction. Our results revealed that microglossia, a clinical phenotype of congenital bony syngnathia in humans exhibited in Wnt1-Cre;pMes-Bmp4 mice due to impaired myogenesis. The augmented BMP4 signal affected the distal distribution, proliferation, and differentiation of myogenic cells as well as tendon patterning, resulting in disarrangement and atrophy of tongue muscles and the loss of the anterior digastric muscle. This study demonstrated how a CNCCs-originated ligand impaired tongue myogenesis via a non-autonomous way, which provided potential formation mechanisms for understanding tongue abnormalities in CNC-related syndromes.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Desenvolvimento Muscular/fisiologia , Língua/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Crista Neural/metabolismo , Transdução de Sinais/fisiologia , Doenças da Língua
12.
Connect Tissue Res ; 62(4): 351-358, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-31875727

RESUMO

Purpose: Our previous study found that in the temporomandibular joint (TMJ) of the K14-cre; Ctnnb1ex3f mouse embryo, the morphogenesis of glenoid fossa was interrupted by the dislocated condyle. This observation suggested that the formation of the glenoid fossa required tissue interactions with condylar mesenchyme. The purpose of this study was to clarify if the interactions between other components are essential for TMJ morphogenesis.Materials and methods: We examined the gross morphology, histology, cell proliferation, and gene expression in the developing TMJ of K14-cre; Ctnnb1ex3f mice by whole-mount bone and cartilage staining, Azon staining, BrdU labeling, and in situ hybridization, respectively.Results: In K14-cre; Ctnnb1ex3f mice, the zygomatic arch was misconnected to the mandibular bone by ectopic bone formation, which disrupted the attachment of temporalis to the mandibular bone and joint capsule formation. Although the initiation and differentiation of the condylar cartilage were slightly impacted, the K14-cre; Ctnnb1ex3f TMJ lacked joint cavities and separated disc, suggesting that the tissue interactions between the joint capsule and the TMJ were indispensable for the cavity formation and disc separation. The ectopic activation of Gli2 in the cells occupying the cavities, and the enhanced PTHrP transcription in the condylar perichondrium of the K14-cre; Ctnnb1ex3f TMJ suggested that the disrupted interactions between the joint capsule and the TMJ impaired cavity formation and disc separation by altering Hh signaling.Conclusion: Joint capsule formation was essential for cavity formation and disc separation during TMJ development.


Assuntos
Côndilo Mandibular , Articulação Temporomandibular , Animais , Cartilagem , Proliferação de Células , Camundongos , Transdução de Sinais
13.
J Invest Dermatol ; 141(2): 334-344, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32682910

RESUMO

Chemotherapy-induced hair loss (alopecia) (CIA) remains a major unsolved problem in clinical oncology. CIA is often considered to be a consequence of the antimitotic and apoptosis-promoting properties of chemotherapy drugs acting on rapidly proliferating hair matrix keratinocytes. Here, we show that in a mouse model of CIA, the downregulation of Shh signaling in the hair matrix is a critical early event. Inhibition of Shh signaling recapitulated key morphological and functional features of CIA, whereas recombinant Shh protein partially rescued hair loss. Phosphoproteomics analysis revealed that activation of the MAPK pathway is a key upstream event, which can be further manipulated to rescue CIA. Finally, in organ-cultured human scalp hair follicles as well as in patients undergoing chemotherapy, reduced expression of SHH gene correlates with chemotherapy-induced hair follicle damage or the degree of CIA, respectively. Our work revealed that Shh signaling is an evolutionarily conserved key target in CIA pathobiology. Specifically targeting the intrafollicular MAPK-Shh axis may provide a promising strategy to manage CIA.


Assuntos
Alopecia/patologia , Antineoplásicos/efeitos adversos , Folículo Piloso/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Alopecia/induzido quimicamente , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Folículo Piloso/patologia , Proteínas Hedgehog/análise , Humanos , Camundongos , Cultura Primária de Células , Proteômica , Couro Cabeludo/citologia , Couro Cabeludo/patologia
14.
Exp Dermatol ; 30(4): 494-502, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33141445

RESUMO

The hair follicle is a classical model for studying epithelial-mesenchymal interactions. Given the critical role of fibroblast growth factor 8 (Fgf8) in embryonic development, we generated a mouse model that overexpresses Fgf8 specifically in the epidermis. Interestingly, these mutant mice exhibited stunted, smaller bodies and severe hypotrichosis. Histological analysis showed that the hair follicles in the mutants were arrested at stage 2 of hair development. The density of hair follicles in the mutant mice was also lower compared to that in the control mice. Overexpression of Fgf8 inhibited the proliferation of epidermal cells and simultaneously promoted apoptosis, leading to the arrest of hair follicle development. Further analysis showed that sonic hedgehog (Shh) and bone morphogenetic protein 4 (Bmp4) were downregulated and upregulated, respectively. To summarize, our study demonstrates that FGF signalling plays an important role in the regulation of hair follicle development.


Assuntos
Células Epidérmicas/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Folículo Piloso/metabolismo , Animais , Apoptose , Proteína Morfogenética Óssea 4/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Proteínas Hedgehog/metabolismo , Camundongos , Regulação para Cima
15.
Proc Natl Acad Sci U S A ; 117(47): 29775-29785, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33139555

RESUMO

Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish-the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.


Assuntos
Domesticação , Evolução Molecular , Carpa Dourada/genética , Seleção Artificial/genética , Animais , Mapeamento de Sequências Contíguas , Conjuntos de Dados como Assunto , Feminino , Proteínas de Peixes/genética , Variação Genética , Genoma/genética , Genômica , Hibridização Genética , Masculino , Modelos Animais , Filogenia , Proteínas Tirosina Quinases/genética
16.
Cancer Manag Res ; 12: 7475-7485, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904466

RESUMO

PURPOSE: Angiopoietin-2 (Ang-2) has been proven to be a potential agent for malignant cancer treatment. The aim of the current study was to investigate the inhibitory effects of chitosan magnetic nanoparticles (CMNPs) loaded with Ang-2 small interfering RNA (Ang2-siRNA) plasmids (Ang2-CMNPs) on malignant melanoma. MATERIALS AND METHODS: Melanoma-bearing nude mice were treated with Ang2-CMNPs and control CMNPs. Tumor volumes in each group were recorded. Real-time fluorescence quantitative-PCR was used to measure the relative Ang-2gene expression. Angiogenesis and Ang-2 expression in tumors were measured by immunohistochemistry. Cell apoptosis in each group was measured by TUNEL staining, and the expression of Bax, Bcl-2 and cleaved caspase-3 was analyzed by immunohistochemistry. RESULTS: The progression of melanoma was significantly inhibited by Ang2-CMNP treatment. Ang2-CMNP treatment efficiently inhibited tumor growth and in-situ Ang-2 expression compared with those of the control group. Furthermore, Ang2-CMNP treatment significantly inhibited tumor angiogenesis and promoted cell apoptosis by regulating the Bax/Bcl-2 ratio and increasing cleaved caspase-3 expression in vivo. CONCLUSION: In summary, Ang2-CMNP treatment increased the regression of normal-appearing vessels in the tumor microenvironment and induced the melanoma cells apoptosis through the mitochondrial apoptotic pathway, suggesting the potential clinical use of Ang2-CMNPs in malignant melanoma treatment.

17.
Sci Data ; 6(1): 267, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704938

RESUMO

Pufferfish are ideal models for vertebrate chromosome evolution studies. The yellowbelly pufferfish, Takifugu flavidus, is an important marine fish species in the aquaculture industry and ecology of East Asia. The chromosome assembly of the species could facilitate the study of chromosome evolution and functional gene mapping. To this end, 44, 27 and 50 Gb reads were generated for genome assembly using Illumina, PacBio and Hi-C sequencing technologies, respectively. More than 13 Gb full-length transcripts were sequenced on the PacBio platform. A 366 Mb genome was obtained with the contig of 4.4 Mb and scaffold N50 length of 15.7 Mb. 266 contigs were reliably assembled into 22 chromosomes, representing 95.9% of the total genome. A total of 29,416 protein-coding genes were predicted and 28,071 genes were functionally annotated. More than 97.7% of the BUSCO genes were successfully detected in the genome. The genome resource in this work will be used for the conservation and population genetics of the yellowbelly pufferfish, as well as in vertebrate chromosome evolution studies.


Assuntos
Genoma , Tetraodontiformes/genética , Animais , Cromossomos , Anotação de Sequência Molecular
18.
J Biol Chem ; 294(48): 18294-18305, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31649032

RESUMO

During mammalian palatogenesis, cranial neural crest-derived mesenchymal cells undergo osteogenic differentiation and form the hard palate, which is divided into palatine process of the maxilla and the palatine. However, it remains unknown whether these bony structures originate from the same cell lineage and how the hard palate is patterned at the molecular level. Using mice, here we report that deficiency in Shox2 (short stature homeobox 2), a transcriptional regulator whose expression is restricted to the anterior palatal mesenchyme, leads to a defective palatine process of the maxilla but does not affect the palatine. Shox2 overexpression in palatal mesenchyme resulted in a hyperplastic palatine process of the maxilla and a hypoplastic palatine. RNA sequencing and assay for transposase-accessible chromatin-sequencing analyses revealed that Shox2 controls the expression of pattern specification and skeletogenic genes associated with accessible chromatin in the anterior palate. This highlighted a lineage-autonomous function of Shox2 in patterning and osteogenesis of the hard palate. H3K27ac ChIP-Seq and transient transgenic enhancer assays revealed that Shox2 binds distal-acting cis-regulatory elements in an anterior palate-specific manner. Our results suggest that the palatine process of the maxilla and palatine arise from different cell lineages and differ in ossification mechanisms. Shox2 evidently controls osteogenesis of a cell lineage and contributes to the palatine process of the maxilla by interacting with distal cis-regulatory elements to regulate skeletogenic gene expression and to pattern the hard palate. Genome-wide Shox2 occupancy in the developing palate may provide a marker for identifying active anterior palate-specific gene enhancers.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Osteogênese/genética , Palato Duro/metabolismo , Animais , Padronização Corporal/genética , Linhagem da Célula/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Maxila/citologia , Maxila/embriologia , Maxila/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Palato Duro/citologia , Palato Duro/embriologia , Transdução de Sinais/genética
19.
Biotechnol Lett ; 41(10): 1133-1145, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399913

RESUMO

Chlamydomonas reinhardtii is a photosynthetic unicellular model algae with multiple biotechnological advantages, and its fatty acids can be used to produce biofuels. Numerous studies suggest that acetyl-coA carboxylase (ACCa) catalyzes the first committed and rate-limiting step of fatty acid biosynthesis, thereby playing a central role in oil accumulation. Here, we cloned and overexpressed ACCa in C. reinhardtii to directly evaluate its effect on fatty acid synthesis. GC-MS analysis found that the unsaturated FAs contents of the CW15-24 and CW15-85 strains were 55.45% and 56.15%, which were significantly enriched compared to the wild type CW15 (48.39%). Under the optimized conditions, the content of lipid by overexpressed the ACCa gene in the mutant CW15-85 (0.46 g/l) was 1.16-fold greater than control through optimization of N and P sources. Altogether, our data clearly demonstrate that ACCa overexpression in C. reinhardtii can directly increase the synthesis of fatty acids.


Assuntos
Acetil-CoA Carboxilase/biossíntese , Chlamydomonas reinhardtii/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Acetil-CoA Carboxilase/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Clonagem Molecular , Cromatografia Gasosa-Espectrometria de Massas , Lipídeos/análise
20.
Development ; 146(14)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31320323

RESUMO

The sinoatrial node (SAN), the primary cardiac pacemaker, consists of a head domain and a junction/tail domain that exhibit different functional properties. However, the underlying molecular mechanism defining these two pacemaker domains remains elusive. Nkx2-5 is a key transcription factor essential for the formation of the working myocardium, but it was generally thought to be detrimental to SAN development. However, Nkx2-5 is expressed in the developing SAN junction, suggesting a role for Nkx2-5 in SAN junction development and function. In this study, we present unambiguous evidence that SAN junction cells exhibit unique action potential configurations intermediate to those manifested by the SAN head and the surrounding atrial cells, suggesting a specific role for the junction cells in impulse generation and in SAN-atrial exit conduction. Single-cell RNA-seq analyses support this concept. Although Nkx2-5 inactivation in the SAN junction did not cause a malformed SAN at birth, the mutant mice manifested sinus node dysfunction. Thus, Nkx2-5 defines a population of pacemaker cells in the transitional zone. Despite Nkx2-5 being dispensable for SAN morphogenesis during embryogenesis, its deletion hampers atrial activation by the pacemaker.


Assuntos
Relógios Biológicos/genética , Linhagem da Célula/genética , Proteína Homeobox Nkx-2.5/fisiologia , Miócitos Cardíacos/citologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Animais , Separação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Átrios do Coração/citologia , Átrios do Coração/embriologia , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Contração Miocárdica/genética , Miócitos Cardíacos/fisiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA