Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116668, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964058

RESUMO

The study of the fractions and distribution characteristics of organic phosphorus in the sediment of the water level fluctuating zone of Nansi Lake is conducive to revealing the transformation of phosphorus in the lake, and has important scientific significance for controlling the eutrophication of Nansi Lake. Based on the sediment of the water level fluctuation zone of Nansi Lake. The improved Hedley continuous grading extraction, ultraviolet-visible spectroscopy and three-dimensional fluorescence spectroscope were used to characterize the structural characteristics and stability of organic molecules in the sediment, and to reflect the differences in the structure and stability of organophosphate in the water level fluctuating zone. Principal component analysis (PCA), Redundancy analysis (RDA) and correlation heat map analysis were used to analyze the correlation between phosphorus and physicochemical index. The results showed that the alternation between wet-dry conditions was more favorable for the release of phosphorus from sediment, compared to continuous inundation conditions. Moreover, the higher the frequency of wet-dry alternations, the greater the release of phosphorus in different forms from the sediment. Wet-dry alternation resulted in a reduction of substituent on the aromatic rings of sediment DOM (dissolved organic matter), and the continuous drying would increase the molecular weight and humidification degree of DOM in the sediment. Correlation analysis showed that NaOH-Po content in sediment was significantly negatively correlated with TP, IP, OP and various organophosphorus forms, indicating a close transformation relationship between phosphorus forms in sediment. The results can provide a scientific basis for controlling the release of endogenous phosphorus and the risk of eutrophication in Nansi Lake.

2.
Infect Drug Resist ; 17: 2417-2429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912221

RESUMO

Periprosthetic joint infection (PJI) is a catastrophic complication following joint replacement surgery, posing significant challenges to orthopedic surgeons. Due to the lack of a definitive diagnostic gold standard, timely treatment initiation is problematic, resulting in substantial economic burdens on patients and society. In this review, we thoroughly analyze the complexities of PJI and emphasize the importance of accurate diagnosis and effective treatment. The article specifically focuses on the advancements in diagnostic techniques, ranging from traditional pathogen culture to advanced molecular diagnostics, and discusses their role in enhancing diagnostic accuracy. Additionally, we review the latest surgical management strategies, including everything from debridement to revision surgeries. Our summary aims to provide practical information for the diagnosis and treatment of PJI and encourages further research to improve diagnostic accuracy and treatment outcomes.

3.
BMC Med Educ ; 24(1): 624, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840091

RESUMO

BACKGROUND: The incidence of mental health problems among medical graduate students is much higher than among students of other disciplines. This can have adverse consequences for the medical students themselves as well as their future patients. This study aims to understand the pressures faced by Chinese medical students and the current status of mental health education. It also propose recommendations for the current situation and prospects for the future. METHOD: The authors conducted in-depth semi-structured interviews with 22 master's students from five medical schools during November 2023. All interview sessions were recorded and transcribed verbatim. The transcriptions were analyzed using the Colaizzi's seven-step method. RESULT: Three main themes were extracted from the students' statements: sources of psychological stress, ways to cope with stress, and perspectives on mental health education. The study showed that current mental health education in China is mostly in the form of printed mental health education manuals and mental health lectures, and there is no active tiered intervention for students at different levels. It is suggested that reforms should be made to shift to a model where the school proactively identifies problems and intervenes based on feedback. CONCLUSION: This study reveals the widespread psychological stress and shortcomings in current education methods. To address these challenges, institutions should develop tailored interventions, including tiered support systems, open dialogue promotion, and resilience training. Future research should focus on evaluating innovative interventions' effectiveness, ultimately fostering a supportive environment that enhances students' success and contributes to a healthier healthcare workforce.


Assuntos
Adaptação Psicológica , Pesquisa Qualitativa , Estresse Psicológico , Estudantes de Medicina , Humanos , China , Estudantes de Medicina/psicologia , Masculino , Feminino , Adulto , Entrevistas como Assunto , Saúde Mental , Educação de Pós-Graduação em Medicina , Capacidades de Enfrentamento , População do Leste Asiático
4.
Sci Total Environ ; 932: 172984, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710392

RESUMO

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 µg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.


Assuntos
Ácidos Ftálicos , Plastificantes , Frutos do Mar , Poluentes Químicos da Água , Ácidos Ftálicos/análise , Plastificantes/análise , Frutos do Mar/análise , China , Animais , Humanos , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental , Ésteres/análise , Contaminação de Alimentos/análise
5.
Talanta ; 275: 126169, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705017

RESUMO

Photonic crystals (PCs), periodically arranged nanoparticles, have emerged with extraordinary optical properties for light manipulation owing to their photonic band gaps (PBGs). Here, a novel strategy and method was developed for efficient enrichment and sensitive detection of cationic organic pollutants in water. Size-controlled Fe3O4@poly (4-styrenesulfonic acid-co-maleic acid) (Fe3O4@PSSMA) was prepared, and high surface charge were formed with the coating of PSSMA layer on the surface of Fe3O4, which could be used for adsorption and removal of cationic organic pollutants. The Fe3O4@PSSMA after adsorbing cationic organic pollutant were assembled to magnetic photonic crystal microdroplet (MPCM) structure in an external magnetic field, which was used as surface-enhanced Raman scattering (SERS) substrate. By coupling the magnetically tuned PBGs with Raman laser wavelength, the light utilization efficiency can be improved and the coupled resonance effect was greatly enhanced. The enhancement factor (EF) of MB was more than 800 attributing to the dual function of enrichment and coupled resonance effect of MPCM. The developed analytical strategy is the first time to use MPCM as a SERS substrate to realize the sensitive detection of 10 nmol L-1 MB in real water, which greatly improves the application of MPCM in the field of contaminant analysis and detection in water.

6.
Anal Chim Acta ; 1303: 342528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609267

RESUMO

Matrix deposition plays a critical role in image quality of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). To improve the ionization efficiency and overcome the limitation of traditional matrix deposition methods in the face of difficult-to-sublimate or difficult-to-dissolve matrix, covalent organic frameworks (COFs) named COF-DhaTab was successfully synthesized and firstly used as matrix film. It was fabricated by imprinting of sieved COF-DhaTab powder on the surface of a double-sided adhesive tape. Outstanding reproducibility and uniformity of COF-DhaTab film were demonstrated by relative standard deviation (RSD) within 8.37% and 7.71% from dot-to-dot and plate-to-plate, respectively. With the introduction of double-sided adhesive tape, water contact angle (WCA) of COF-DhaTab film increased from 55° to 141°, resulting in significant suppression of analyte diffusion. Moreover, the intensity of potassium perfluorooctanic sulfonate (PFOS, C8F17SO3-, m/z 498.93) was 9.3 × 105, more than six hundred times higher than that using DHB matrix. This enhancement was attributed to the rough surface and multiple branches of the synthesized COF-DhaTab. To verify the ability of COF-DhaTab film as substrate, the spatial distribution of PFOS in zebrafish, rat liver and kidney tissues was explored. Superior imaging capability was displayed with high-spatial resolution and reliable location distribution. These results not only demonstrate the outstanding ability of COF-DhaTab as matrix for MALDI-MS and MALDI-MSI, but also provide a facile approach for fabrication of novel matrix films for MALDI-MSI.

7.
Ultrasonics ; 141: 107318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657431

RESUMO

Piezoelectric ultrasonic transducers, vital in medical devices and aerospace, often face challenges like resonant frequency shifts and impedance variations affecting their operational efficiency. This paper introduces a shunted piezoelectric transducer which could tune itself by digitally programmable inductance. A transformer and inductance-capacitance matching network ensures enhanced compatibility and impedance management. Proposing a fuzzy PI-based phase control method achieves resonant frequency tracking, synchronizing operational frequency with the transducer. In contrast to traditional methods, our approach enables faster and more precise fine-tuning, detecting and rectifying real-world deviations for optimal performance. A comprehensive experimental validation, based on fundamental knowledge analysis, confirms the feasibility and superiority of our proposed method, and the commonly encountered issues of resonance frequency deviation and impedance variation in high-power piezoelectric transducer applications can be effectively mitigated.

8.
Sci Total Environ ; 929: 172693, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663607

RESUMO

Soil contamination by toxic heavy metal induces serious environmental hazards. In recent years, the use of indium (In) in semiconductor products has increased considerably and the release of In is inevitable, which will pose great risk to the ecosystem. The interaction between metal and plants which are the fundamental components of all ecosystems are an indispensable aspect of indium assessment and remediation. The role of flavonols, which is essential to plant resistance to In stress, remains largely unknown. FLS1 related lines of A. thaliana (Col, fls1-3 and OE) were exposed to In stress in soil and flavonols as root exudates were analyzed in exogenous application test. The accumulation and release of flavonols could be induced by In stress. However, flavonols exhibited different function in vivo and in vitro of plant. The basic function of flavonols was to affect root morphology via regulating auxin, but being intervened by In stress. The synthesis and accumulation of flavonols in vivo could activate the antioxidant system and the metal detoxification system to alleviate the toxic effects of In on plant. In addition, plants could make phone calls to rhizosphere microbes for help when exposed to In. Flavonols in vitro might act as the information transmission. Combination of endogenous and exogenous flavonols could affect the migration and transformation of In in soil-plant system via metal complexation and transportation pathway.


Assuntos
Flavonóis , Índio , Rizosfera , Poluentes do Solo , Arabidopsis
9.
J Control Release ; 368: 663-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492862

RESUMO

Interleukin-2 (IL-2) exhibits the unique capacity to modulate immune functions, potentially exerting antitumor effects by stimulating immune responses, making it highly promising for immunotherapy. However, the clinical use of recombinant IL-2 protein faces significant limitations due to its short half-life and systemic toxicity. To overcome these challenges and fully exploit IL-2's potential in tumor immunotherapy, this study reports the development of a tumor-activated IL-2 mRNA, delivered via lipid nanoparticles (LNPs). Initially, ionizable lipid U-101 derived nanoparticles (U-101-LNP) were prepared using microfluidic technology. Subsequent in vitro and in vivo delivery tests demonstrated that U-101-LNP achieved more effective transfection than the approved ALC-0315-LNP. Following this, IL-2F mRNAs, encoding fusion proteins comprising IL-2, a linker, and CD25 (IL-2Rα), were designed and synthesized through in vitro transcription. A cleavable linker, consisting of the peptide sequence SGRSEN↓IRTA, was selected for cleavage by matrix metalloproteinase-14 (MMP-14). IL-2F mRNA was then encapsulated in U-101-LNP to create U-101-LNP/IL-2F mRNA complexes. After optimization, assessments of expression efficiency, masking, and release characteristics revealed that IL-2F with linker C4 demonstrated superior performance. Finally, the antitumor activity of IL-2F mRNA was evaluated. The results indicated that U-101-LNP/IL-2F mRNA achieved the strongest antitumor effect, with an inhibition rate of 70.3%. Immunohistochemistry observations revealed significant expressions of IL-2, IFN-γ, and CD8, suggesting an up-regulation of immunomodulation in tumor tissues. This effect could be ascribed to the expression of IL-2F, followed by the cleavage of the linker under the action of MMP-14 in tumor tissue, which sustainably releases IL-2. H&E staining of tissues treated with U-101-LNP/IL-2F mRNA showed no abnormalities. Further evaluations indicated that the U-101-LNP/IL-2F mRNA group maintained proper levels of inflammatory factors without obvious alterations in liver and renal functions. Taken together, the U-101-LNP/IL-2F mRNA formulation demonstrated effective antitumor activity and safety, which suggests potential applicability in clinical immunotherapy.


Assuntos
Lipossomos , Nanopartículas , Neoplasias , Humanos , Interleucina-2/genética , Metaloproteinase 14 da Matriz , Imunoterapia , Neoplasias/terapia
10.
Proc Natl Acad Sci U S A ; 121(14): e2317574121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530899

RESUMO

Fine particulate matter (PM2.5) is globally recognized for its adverse implications on human health. Yet, remain limited the individual contribution of particular PM2.5 components to its toxicity, especially considering regional disparities. Moreover, prevention solutions for PM2.5-associated health effects are scarce. In the present study, we comprehensively characterized and compared the primary PM2.5 constituents and their altered metabolites from two locations: Taiyuan and Guangzhou. Analysis of year-long PM2.5 samples revealed 84 major components, encompassing organic carbon, elemental carbon, ions, metals, and organic chemicals. PM2.5 from Taiyuan exhibited higher contamination, associated health risks, dithiothreitol activity, and cytotoxicities than Guangzhou's counterpart. Applying metabolomics, BEAS-2B lung cells exposed to PM2.5 from both cities were screened for significant alterations. A correlation analysis revealed the metabolites altered by PM2.5 and the critical toxic PM2.5 components in both regions. Among the PM2.5-down-regulated metabolites, phosphocholine emerged as a promising intervention for PM2.5 cytotoxicities. Its supplementation effectively attenuated PM2.5-induced energy metabolism disorder and cell death via activating fatty acid oxidation and inhibiting Phospho1 expression. The highlighted toxic chemicals displayed combined toxicities, potentially counteracted by phosphocholine. Our study offered a promising functional metabolite to alleviate PM2.5-induced cellular disorder and provided insights into the geo-based variability in toxic PM2.5 components.


Assuntos
Poluentes Atmosféricos , Doenças Mitocondriais , Humanos , Poluentes Atmosféricos/análise , Fosforilcolina , Material Particulado/análise , Pulmão , Carbono/análise , Monitoramento Ambiental
11.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473897

RESUMO

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
12.
Environ Technol ; : 1-17, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362607

RESUMO

The hydrogen-based membrane biofilm reactor (H2-MBfR) is an emerging biological nitrogen removal technology characterized by high efficiency, energy-saving capability, and environmental friendliness. The technology achieves denitrification and denitrogenation of microorganisms by passing hydrogen as an electron donor from inside to outside through the hollow fibre membrane module, and eventually the hydrogen reachs the biofilm attached to the surface of the fibre membrane. H2-MBfR has obtained favourable outcomes in the treatment of secondary biochemical effluent and low concentration nitrogen polluted water source. The experiment was optimized by s single-factor testing and response surface methodology-based optimization (RSM), and the optimal operational conditions were obtained as follows: an influent flow rate of 2 mL/min, hydrogen pressure of 0.04 MPa, and influent nitrate concentration of 24.29 mg/L. Under these conditions, a high nitrate removal rate of 98.25% was achieved. In addition, Proteobacteria and Bacteroidetes were the dominant bacteria in all stages, and the genus Hydrogenophaga was sufficiently enriched, occurring at 13.0%-49.0% throughout the reactor operation. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for nitrate reduction and inorganic carbon utilization by microorganisms in the H2-MBfR was explored through comparison with the KEGG database. The results provided a mechanistic explanation for the denitrification and carbon sequestration capacity of the H2-MBfR.

13.
J Hazard Mater ; 465: 133409, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211520

RESUMO

p-Phenylenediamine (PPD) antioxidants are heavily used for protection of commercial rubber products (e.g., vehicle tire), resulting in their widespread contamination in ecosystem. PPD-quinones (PPDQs), the toxic quinone derivatives of PPDs, are also discovered as novel environmental pollutants. However, the contamination characteristics of PPDs/PPDQs in fresh atmospheric snow (without deposition on the Earth surface) have seldom been studied. This work first reports the broad distributions of PPDs and PPDQs in fresh atmospheric snow collected from seven Chinese urban areas. Individual median values of detected concentrations were in the ranges of 0.4 to 260 pg g-1 (PPDs) and 0.7 to 104 pg g-1 (PPDQs). The concentration deviation by long-term deposition on the ground was eliminated. In most sampling regions, wearing of vehicle rubber tires was possibly responsible for spatial-dependent PPDs' pollution level variations, and high concentrations of PPDs promoted PPDQs' formation in snow from atmosphere. Yet, excessive O3 may further oxidize and reduce PPDQs in atmospheric fresh snow from Zhengzhou, which is different from previous research. Furthermore, snowfall was noticed might amplify concentrations of three PPDs and PPDQs in an inland lake, which possibly worsen corresponding pollution in water system. Current study elucidates the potential impacts of snow-bound PPDs/PPDQs on ecosystems should not be underestimated.

14.
Mar Pollut Bull ; 199: 115977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194824

RESUMO

Frame Transplantation System (FTS) is considered an efficient method for seagrass restoration, but the effect of the rusting of iron frame on seagrass restoration remains unclear. We transplanted Zostera marina plants using iron FTS treated with fluorocarbon paint (painted treatment, PT) and traditional unpainted iron FTS (unpainted treatment, UT) under controlled mesocosm conditions for 24 days. Our results showed that the survival rate of Z. marina under the UT was significantly 31.2 % lower than that of the plants under the PT. Soluble sugar content in Z. marina rhizomes under the UT was significantly 2.19 times higher than that of the plants under the PT. Transcriptome analysis revealed differentially expressed genes (DEGs) involved in photosynthesis, metabolism and signal transduction functions. The results provide valuable data that could prove helpful in the development of efficient restoration techniques for Z. marina beds.


Assuntos
Zosteraceae , Zosteraceae/metabolismo , Perfilação da Expressão Gênica , Ecologia , Plantas , Fotossíntese
15.
Environ Res ; 247: 118214, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246302

RESUMO

The contaminant status, spatial distribution, partitioning behavior, and ecological risks of 26 legacy and emerging perfluoroalkyl and polyfluoroalkyl substances (PFASs) in Laizhou Bay, China were investigated. The concentrations of ∑PFASs in surface and bottom seawater ranged from 37.2 to 222 ng/L and from 34.2 to 305 ng/L with an average of 116 ± 62.7 and 138 ± 93.8 ng/L, respectively. There were no significant differences in the average concentrations between the surface and bottom seawater (P > 0.05). Perfluorooctanoic acid (PFOA) and short-chain PFASs dominated the composition of PFASs in seawater. The concentrations of ∑PFASs in sediments ranged from 0.997 to 7.21 ng/g dry weight (dw), dominated by perfluorobutane sulfonate (PFBS), perfluorobutanoic acid (PFBA), and long-chain PFASs. The emerging alternatives of perfluoro-1-butane-sulfonamide (FBSA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) were detected for the first time in Laizhou Bay. The ∑PFASs in seawater in the southwest of the bay were higher than those in the northeast of the bay. The ∑PFASs in sediments in the northeast sea area were higher than those in the inner area of the bay. Log Kd and log Koc values increased with increasing carbon chain length for PFASs compounds. Ecological risk assessments indicated a low ecological risk associated with HFPO-DA but a moderate risk associated with PFOA contamination in Laizhou Bay. Positive matrix factorization (PMF) analysis revealed that fluoropolymer manufacturing, metal plating plants, and textile treatments were identified as major sources contributing to PFASs contamination.


Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Fluorocarbonos , Poluentes Químicos da Água , Baías , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , China , Medição de Risco , Ácidos Alcanossulfônicos/análise
16.
J Hazard Mater ; 465: 133095, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056270

RESUMO

In recent years, various materials have been used to adsorb and remove perfluoroalkyl compounds from water. However, most of these materials have limited applications due to their high cost, complex synthesis, inadequate selectivity and sensitivity, and, even worse, the possibility of introducing secondary pollution. Here, under mild conditions, we prepared an inexpensive imidazolium chloride and nitrogen-rich polymer (TAGX-Cl) with a high cationic loading rate and a high yield (>82%). The adsorbent exhibits excellent pH tolerance (pH=1-9) and achieves nearly 99.9% removal of nine perfluoroalkyl carboxylic acids (PFCAs) within 120 min. Experimental data and theoretical simulations confirmed that synergistic electrostatic interactions, hydrogen bonds, and P-π interactions control the adsorptive ability of TAGX-Cl. This work provides a practical strategy for PFCAs removal.

17.
Sci China Life Sci ; 67(1): 83-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721637

RESUMO

SARS-CoV-2 continues to threaten human society by generating novel variants via mutation and recombination. The high number of mutations that appeared in emerging variants not only enhanced their immune-escaping ability but also made it difficult to predict the pathogenicity and virulence based on viral nucleotide sequences. Molecular markers for evaluating the pathogenicity of new variants are therefore needed. By comparing host responses to wild-type and variants with attenuated pathogenicity at proteome and metabolome levels, six key molecules on the polyamine biosynthesis pathway including putrescine, SAM, dc-SAM, ODC1, SAMS, and SAMDC were found to be differentially upregulated and associated with pathogenicity of variants. To validate our discovery, human airway organoids were subsequently used which recapitulates SARS-CoV-2 replication in the airway epithelial cells of COVID-19 patients. Using ODC1 as a proof-of-concept, differential activation of polyamine biosynthesis was found to be modulated by the renin-angiotensin system (RAS) and positively associated with ACE2 activity. Further experiments demonstrated that ODC1 expression could be differentially activated upon a panel of SARS-CoV-2 variants of concern (VOCs) and was found to be correlated with each VOCs' pathogenic properties. Particularly, the presented study revealed the discriminative ability of key molecules on polyamine biosynthesis as a predictive marker for virulence evaluation and assessment of SARS-CoV-2 variants in cell or organoid models. Our work, therefore, presented a practical strategy that could be potentially applied as an evaluation tool for the pathogenicity of current and emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Multiômica , Putrescina
18.
J Hazard Mater ; 465: 133312, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38147746

RESUMO

The emerging toxicant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) is of wide concern due to its ubiquitous occurrence and high toxicity. Despite regular human exposure, limited evidence exists about its presence in the body and potential health risks. Herein, we analyzed cerebrospinal fluid (CSF) samples from Parkinson's disease (PD) patients and controls. The CSF levels of 6PPD-Q were twice as high in PD patients compared to controls. Immunostaining assays performed with primary dopaminergic neurons confirm that 6PPD-Q at environmentally relevant concentrations can exacerbate the formation of Lewy neurites induced by α-synuclein preformed fibrils (α-syn PFF). Assessment of cellular respiration reveals a considerable decrease in neuronal spare respiratory and ATP-linked respiration, potentially due to changes in mitochondrial membrane potential. Moreover, 6PPD-Q-induced mitochondrial impairment correlates with an upsurge in mitochondrial reactive oxygen species (mROS), and Mito-TEMPO-driven scavenging of mROS can lessen the amount of pathologic phospho-serine 129 α-synuclein. Untargeted metabolomics provides supporting evidence for the connection between 6PPD-Q exposure and changes in neuronal metabolite profiles. In-depth targeted metabolomics further unveils an overall reduction in glycolysis metabolite pool and fluctuations in the quantity of TCA cycle intermediates. Given its potentially harmful attributes, the presence of 6PPD-Q in human brain could potentially be a risk factor for PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doenças Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Quinonas/metabolismo
19.
Environ Pollut ; 343: 123212, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145640

RESUMO

Perfluorooctanoic acid (PFOA) has drawn increasing attention as a highly persistent organic pollutant. The inherent stability, rigidity and potential toxicities characteristics make it a challenge to develop efficient technologies to eliminate it from water. Photocatalytic technology, as one advanced method, has been widely used in the degradation of PFOA in water. In this review, recent progress in the design of photocatalysts including doping, defects engineering, heterojunction and surface modification to boost the photocatalytic performance toward PFOA is summarized. The relevant degradation mechanisms were also discussed in detail. Finally, future prospect and challenges are proposed. This review may provide new guidelines for researchers to design much more efficient photocatalysts applied in the elimination of PFOA.


Assuntos
Fluorocarbonos , Água , Caprilatos , Fluorocarbonos/análise , Poluentes Orgânicos Persistentes
20.
Cancer Gene Ther ; 31(2): 273-284, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38129681

RESUMO

Antibody-Drug Conjugates (ADCs) represent a rapidly advancing category of oncology therapeutics, spanning the targeted therapy for both hematologic malignancies and solid cancers. A crucial aspect of ADC research involves the identification of optimal surface antigens that can effectively differentiate target cells from most mammalian cell types. Herein, we have devised an algorithm and compiled an extensive dataset annotating cell membrane proteins. This dataset is derived from comprehensive transcriptomic, proteomic, and genomic data encompassing 19 types of solid cancer as well as normal tissues. The aim is to uncover potential therapeutic surface antigens for precise ADC targeting. The resulting target landscape comprises 165 combinations of targets and indications, along with 75 candidates of cell surface proteins. Notably, 35 of these candidates possess characteristics suitable for ADC targeting, and have not been previously reported in ADC research and development. Additionally, we have identified a total of 159 ADCs from a pool of 760 clinical trials. Of these, 72 ADCs are presently undergoing interventional evaluation for a variety of solid cancer types, targeting 36 unique antigens. We conducted an analysis of their expression in normal tissues using this comprehensive annotation dataset, revealing a diverse range of profiles for the current ADC targets. Moreover, we emphasize that the biological impacts of target antigens have the potential to enhance their clinical effectiveness. We propose a comprehensive assessment of the drugability of target antigens, considering multiple facets. This study represents a thorough exploration of pan-cancer ADC targets over the past two decades, underscoring the potential of a comprehensive solid cancer target atlas to broaden the scope of ADC therapies.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Animais , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Proteômica , Antígenos de Superfície/uso terapêutico , Antineoplásicos/uso terapêutico , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA