Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Vaccines (Basel) ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793715

RESUMO

The rapid mutation of SARS-CoV-2 has led to multiple rounds of large-scale breakthrough infection and reinfection worldwide. However, the dynamic changes of humoral and cellular immunity responses to several subvariants after infection remain unclear. In our study, a 6-month longitudinal immune response evaluation was conducted on 118 sera and 50 PBMC samples from 49 healthy individuals who experienced BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection. By studying antibody response, memory B cell, and IFN-γ secreting CD4+/CD8+ T cell response to several SARS-CoV-2 variants, we observed that each component of immune response exhibited distinct kinetics. Either BA.5/BF.7/XBB breakthrough infection or BA.5/BF.7-XBB reinfection induces relatively high level of binding and neutralizing antibody titers against Omicron subvariants at an early time point, which rapidly decreases over time. Most of the individuals at 6 months post-breakthrough infection completely lost their neutralizing activities against BQ.1.1, CH.1.1, BA.2.86, JN.1 and XBB subvariants. Individuals with BA.5/BF.7-XBB reinfection exhibit immune imprinting shifting and recall pre-existing BA.5/BF.7 neutralization antibodies. In the BA.5 breakthrough infection group, the frequency of BA.5 and XBB.1.16-RBD specific memory B cells, resting memory B cells, and intermediate memory B cells gradually increased over time. On the other hand, the frequency of IFN-γ secreting CD4+/CD8+ T cells induced by WT/BA.5/XBB.1.16 spike trimer remains stable over time. Overall, our research indicates that individuals with breakthrough infection have rapidly declining antibody levels but have a relatively stable cellular immunity that can provide some degree of protection from future exposure to new antigens.

3.
Environ Res ; 252(Pt 2): 118910, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604487

RESUMO

Earthworms can resist high levels of soil copper (Cu) contamination and play an essential role in absorbing them effectively. However, the molecular mechanisms underlying Cu tolerance in earthworms are poorly understood. To address this research gap, we studied alterations of Eisenia fetida in antioxidant enzymes, gut microbiota, metabolites, and genes under varying levels of Cu exposure soils (0, 67.58, 168.96, 337.92 mg/kg). Our results revealed a reduction in antioxidant enzyme activities across all treatment groups, indicating an adaptive response to alleviate Cu-induced oxidative stress. Analysis of gut microbiota revealed a significant increase in the abundance of bacteria associated with nutrient uptake and Cu2+ excretion under Cu stress. Furthermore, metabolomic analysis discovered an increase in certain metabolites associated with energy metabolism, such as pyruvic acid, L-malic acid, and fumaric acid, as Cu concentration escalated. These results suggested that enhanced energy supply contributes to the elevated tolerance of E. fetida towards Cu. Additionally, transcriptome analysis not only identified crucial detoxification genes (Hsp70, CTSL, GST, CHAC, and GCLC), but also confirmed the critical role of glutathione metabolism as a key pathway in E. fetida Cu detoxification processes. These findings provide a new perspective on the molecular mechanisms of Cu tolerance in earthworms.

4.
Microbiol Spectr ; 12(5): e0255823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526296

RESUMO

This study aimed to investigate the prognostic value of a novel droplet digital polymerase chain reaction (DDPCR) assay in sepsis patients. In this prospective cohort study, univariable and multivariable Cox regressions were used to assess risk factors for 28-day mortality. We also monitored pathogen load together with clinical indicators in a subgroup of the cohort. A total of 107 sepsis patients with positive baseline DDPCR results were included. Detection of poly-microorganisms [adjusted hazard ratio (HR) = 3.19; 95% confidence interval (CI) = 1.34-7.62; P = 0.009], high Charlson Comorbidity Index (CCI) score (adjusted HR = 1.14; 95% CI = 1.01-1.29; P = 0.041), and Sequential Organ Failure Assessment (SOFA) score (adjusted HR = 1.18; 95% CI = 1.05-1.32; P = 0.005) at baseline were independent risk factors for 28-day mortality while initial pathogen load was not associated (adjusted HR = 1.17; 95% CI = 0.82-1.66; P = 0.385). Among 63 patients with serial DDPCR results, an increase in pathogen load at days 6-8 compared to baseline was a risk factor for 28-day mortality (P = 0.008). Also, pathogen load kinetics were significantly different between day-28 survivors and nonsurvivors (P = 0.022), with a decline overtime only in survivors and an increase from days 3 and 4 to days 6-8 in nonsurvivors. Using DDPCR technique, we found that poly-microorganisms detected and increased pathogen load a week after sepsis diagnosis were associated with poor prognosis.IMPORTANCEThis prospective study was initiated to explore the prognostic implications of a novel multiplex PCR assay in sepsis. Notably, our study was the largest cohort of sepsis with droplet digital polymerase chain reaction pathogen monitoring to date, allowing for a comprehensive evaluation of the prognostic significance of both pathogen species and load. We found that detection of poly-microorganisms was an independent risk factors for 28-day mortality. Also, pathogen load increase 1 week after sepsis diagnosis was a risk factor for 28-day mortality, and differential pathogen load kinetics were identified between day-28 survivors and nonsurvivors. Overall, this study demonstrated that pathogen species and load were highly correlated with sepsis prognosis. Patients exhibiting conditions mentioned above face a more adverse prognosis, suggesting the potential need for an escalation of antimicrobial therapy.Registered at ClinicalTrials.gov (NCT05190861).


Assuntos
Reação em Cadeia da Polimerase , Sepse , Humanos , Sepse/microbiologia , Sepse/mortalidade , Sepse/diagnóstico , Estudos Prospectivos , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Idoso , Reação em Cadeia da Polimerase/métodos , Fatores de Risco , Carga Bacteriana/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Idoso de 80 Anos ou mais , Cinética
5.
Respir Res ; 25(1): 134, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500102

RESUMO

Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.


Assuntos
Asma , Transtornos Respiratórios , Humanos , Neuraminidase/genética , Inflamação
6.
Angew Chem Int Ed Engl ; 63(16): e202318483, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407995

RESUMO

Bacterial infections have emerged as the leading causes of mortality and morbidity worldwide. Herein, we developed a dual-channel fluorescence "turn-on" sensor array, comprising six electrostatic complexes formed from one negatively charged poly(para-aryleneethynylene) (PPE) and six positively charged aggregation-induced emission (AIE) fluorophores. The 6-element array enabled the simultaneous identification of 20 bacteria (OD600=0.005) within 30s (99.0 % accuracy), demonstrating significant advantages over the array constituted by the 7 separate elements that constitute the complexes. Meanwhile, the array realized different mixing ratios and quantitative detection of prevalent bacteria associated with urinary tract infection (UTI). It also excelled in distinguishing six simulated bacteria samples in artificial urine. Remarkably, the limit of detection for E. coli and E. faecalis was notably low, at 0.000295 and 0.000329 (OD600), respectively. Finally, optimized by diverse machine learning algorithms, the designed array achieved 96.7 % accuracy in differentiating UTI clinical samples from healthy individuals using a random forest model, demonstrating the great potential for medical diagnostic applications.


Assuntos
Bactérias , Escherichia coli , Humanos , Fluorescência
7.
World J Gastroenterol ; 30(1): 9-16, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38293326

RESUMO

In 2023, Baishideng Publishing Group (Baishideng) routinely published 47 open-access journals, including 46 English-language journals and 1 Chinese-language journal. Our successes were accomplished through the collective dedicated efforts of Baishideng staffs, Editorial Board Members, and Peer Reviewers. Among these 47 Baishideng journals, 7 are included in the Science Citation Index Expanded (SCIE) and 6 in the Emerging Sources Citation Index (ESCI). With the support of Baishideng authors, company staffs, Editorial Board Members, and Peer Reviewers, the publication work of 2023 is about to be successfully completed. This editorial summarizes the 2023 activities and accomplishments of the 13 SCIE- and ESCI-indexed Baishideng journals, outlines the Baishideng publishing policy changes and additions made this year, and highlights the unique advantages of Baishideng journals.


Assuntos
Publicações Periódicas como Assunto , Editoração , Humanos , Idioma
8.
Emerg Microbes Infect ; 13(1): 2292071, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054806

RESUMO

Data on reinfection in large Asian populations are limited. In this study, we aimed to evaluate the reinfection rate, disease severity, and time interval between the infections in the symptomatic and asymptomatic populations which are firstl infected with BA.2 Omicron Variant. We retrospectively included adult patients with COVID-19 discharged from four designated hospitals between 27 April 2021 and 30 November 2022, who were interviewed via telephone from 29 January to 1 March 2023. Univariable and multivariable analyses were used to explore risk factors associated with reinfection. A total of 16,558 patients were followed up, during the telephone survey of an average of 310.0 days, 1610 (9.72%) participants self-reported reinfection. The mean time range of reinfection was 257.9 days. The risks for reinfection were analysed using multivariable logistic regression. Patients with severe first infection were at higher risk for reinfection (aORs, 2.50; P < 0.001). The male (aORs,0.82; P < 0.001), the elderly (aORs, 0.44; P < 0.001), and patients with full vaccination (aORs, 0.67; P < 0.001) or booster (aORs, 0.63; P < 0.001) had the lower risk of reinfection. Patients over 60 years of age (aORs,9.02; P = 0.006) and those with ≥2 comorbidities (aORs,11.51; P = 0.016). were at higher risk for severe reinfection. The number of clinical manifestations of reinfection increases in people with severe first infection (aORs, 2.82; P = 0.023). The overall reinfection rate was 9.72%, and the reinfection rate of Omicron-to-Omicron subvariants was 9.50% at one year. The severity of Omicron-Omicron reinfection decreased. Data from our clinical study may provide clinical evidence and bolster response preparedness for future COVID-19 reinfection waves.


Assuntos
COVID-19 , Reinfecção , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , China , Hospitais
9.
Small ; 20(5): e2304966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752777

RESUMO

The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost-effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi-materials multi-scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly-free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub-100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nm and a linear dynamic range of 1-10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next-generation integrated devices for broad applications in point-of-care health monitoring and sensing.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Microfluídica , Técnicas Biossensoriais/métodos , Impressão Tridimensional , Lactatos
10.
Cell Host Microbe ; 32(1): 25-34.e5, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38029742

RESUMO

Emerging SARS-CoV-2 sub-lineages like XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3 and the variant BA.2.86 have recently been identified. Understanding the efficacy of current vaccines on these emerging variants is critical. We evaluate the serum neutralization activities of participants who received COVID-19 inactivated vaccine (CoronaVac), those who received the recently approved tetravalent protein vaccine (SCTV01E), or those who had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Neutralization profiles against a broad panel of 30 sub-lineages reveal that BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibit heightened resistance to neutralization compared to previous variants. However, despite their extra mutations, BA.2.86 and the emerging XBB sub-lineages do not demonstrate significantly increased resistance to neutralization over XBB.1.5. Encouragingly, the SCTV01E booster consistently induces higher neutralizing titers against all these variants than breakthrough infection does. Cellular immunity assays also show that the SCTV01E booster elicits a higher frequency of virus-specific memory B cells. Our findings support the development of multivalent vaccines to combat future variants.


Assuntos
Infecções Irruptivas , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
11.
Anal Chem ; 96(1): 301-308, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38102984

RESUMO

Developing new strategies to construct sensor arrays that can effectively distinguish multiple natural components with similar structures in mixtures is an exceptionally challenging task. Here, we propose a new multilocus distance-modulated indicator displacement assay (IDA) strategy for constructing a sensor array, incorporating machine learning optimization to identify polyphenols. An 8-element array, comprising two fluorophores and their six dynamic covalent complexes (C1-C6) formed by pairing two fluorophores with three distinct distance-regulated quenchers, has been constructed. Polyphenols with diverse spatial arrangements and combinatorial forms compete with the fluorophores by forming pseudocycles with quenchers within the complexes, leading to varying degrees of fluorescence recovery. The array accurately and effectively distinguished four tea polyphenols and 16 tea varieties, thereby demonstrating the broad applicability of the multilocus distance-modulated IDA array in detecting polyhydroxy foods and natural medicines.


Assuntos
Polifenóis , Chá , Espectrometria de Fluorescência , Aprendizado de Máquina
12.
Expert Opin Biol Ther ; 23(11): 1137-1149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078403

RESUMO

BACKGROUND: Solid tumors are becoming prevalent affecting both old and young populations. Numerous solid tumors are associated with high cMET expression. The complexity of solid tumors combined with the highly interconnected nature of the cMET/HGF pathway with other cellular pathways make the pursuit of finding an effective treatment extremely challenging. The current standard of care for these malignancies is mostly small molecule-based chemotherapy. Antibody-based therapeutics as well as antibody drug conjugates are promising emerging classes against cMET-overexpressing solid tumors. RESEARCH DESIGN AND METHODS: In this study, we described the design, synthesis, in vitro and in vivo characterization of cMET-targeting Fab drug conjugates (FDCs) as an alternative therapeutic strategy. The format is comprised of a Fab conjugated to a potent cytotoxic drug via a cleavable linker employing lysine-based and cysteine-based conjugation chemistries. RESULTS: We found that the FDCs have potent anti-tumor efficacies in cancer cells with elevated overexpression of cMET. Moreover, they demonstrated a remarkable anti-tumor effect in a human gastric xenograft mouse model. CONCLUSIONS: The FDC format has the potential to overcome some of the challenges presented by the other classes of therapeutics. This study highlights the promise of antibody fragment-based drug conjugate formats for the treatment of solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Imunoconjugados/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos , Linhagem Celular Tumoral
14.
Adv Mater ; 35(47): e2212230, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37493182

RESUMO

Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data-driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe-based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe-based materials prepared using a simple high-throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m-1 K-2 , which is a 75% improvement from the baseline composite (nominal composition of Ag2 Se1 ). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials.

16.
Nature ; 617(7960): 292-298, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165239

RESUMO

The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid-liquid or solid-solid phases4-6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.

17.
Front Nutr ; 10: 1119583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051119

RESUMO

Introduction: As low FODMAP (Fermentable oligosaccharides, disaccharides, monosaccharides and polyols) diet therapy is recommended for most of Irritable Bowel Syndrome (IBS) patients, the consequent insufficient of dietary fibers (DFs) intake exert an adverse impact on intestinal health. It is necessary to find suitable DFs for IBS patients. Methods: This study extracted a water-insoluble polysaccharide from Wolfiporia cocos (WIP) by alkali-extraction and acid-precipitation method. Its molecular weight was detected by high performance gel permeation chromatography (HPGPC) analysis. The structure of WIP was analyzed by Fourier transform infrared (FT-IR) spectrum, Nuclear Magnetic Resonance (NMR) spectra and X-ray diffraction (XRD). The properties related to stability, digestion, viscosity, osmotic activity, adsorption and fermentation were investigated, aimed to explore the feasibility of WIP as a new DF supplement for patients with IBS. In addition, 16S rRNA sequencing analysis was conducted to explore its effects on IBS-related gut microbiota. Results and Discussion: The results showed that WIP had a single homogeneous composition and the molecular weight was 8.1 × 103 Da. WIP was indicated as a kind of pyranose form with ß anomeric configuration and the main chain of WIP was 1,3-ß-glucan with amorphous structure. In addition to good thermal stability, WIP also has low bioavailability and can reach the colon mostly without being digested. Moreover, the low viscosity and osmotic activity, the high water- swelling and water/oil-holding capacity, fructose adsorption capacity and poor fermentation performance of WIP demonstrated that it is suitable for IBS patients. It is worth noting that WIP regulates IBS associated gut microbiota effectively, such as the abundance of Lachnospiraceae and Prevotella. These findings provide a theoretical basis for the development of WIP as a dietary supplement for IBS patients with low FODMAP diet therapy. GRAPHICAL ABSTRACT.

18.
Adv Sci (Weinh) ; 10(18): e2300426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088797

RESUMO

The ability to synthesize compositionally complex nanostructures rapidly is a key to high-throughput functional materials discovery. In addition to being time-consuming, a majority of conventional materials synthesis processes closely follow thermodynamics equilibria, which limit the discovery of new classes of metastable phases such as high entropy oxides (HEO). Herein, a photonic flash synthesis of HEO nanoparticles at timescales of milliseconds is demonstrated. By leveraging the abrupt heating and cooling cycles induced by a high-power-density xenon pulsed light, mixed transition metal salt precursors undergo rapid chemical transformations. Hence, nanoparticles form within milliseconds with a strong affinity to bind to the carbon substrate. Oxygen evolution reaction (OER) activity measurements of the synthesized nanoparticles demonstrate two orders of magnitude prolonged stability at high current densities, without noticeable decay in performance, compared to commercial IrO2 catalyst. This superior catalytic activity originates from the synergistic effect of different alloying elements mixed at a high entropic state. It is found that Cr addition influences surface activity the most by promoting higher oxidation states, favoring optimal interaction with OER intermediates. The proposed high-throughput method opens new pathways toward developing next-generation functional materials for various electronics, sensing, and environmental applications, in addition to renewable energy conversion.


Assuntos
Ligas , Carbono , Entropia , Termodinâmica , Óxidos , Oxigênio
19.
Cytotherapy ; 25(7): 763-772, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055320

RESUMO

BACKGROUND AIMS: Adoptive cell therapy with chimeric antigen receptor (CAR)-expressing natural killer (NK) cells is an emerging approach that holds promise in multiple myeloma (MM). However, the generation of CAR-NK cells targeting CD38 is met with obstacles due to the expression of CD38 on NK cells. Knock-out of CD38 is currently explored as a strategy, although the consequences of the lack of CD38 expression with regards to engraftment and activity in the bone marrow microenvironment are not fully elucidated. Here, we present an alternative approach by harnessing the CD38dim phenotype occurring during long-term cytokine stimulation of primary NK cells. METHODS: Primary NK cells were expanded from peripheral blood mononuclear cells by long-term IL-2 stimulation. During expansion, the CD38 expression was monitored in order to identify a time point when introduction of a novel affinity-optimized αCD38-CAR confered optimal viability, i.e. prevented fratricide. CD38dim NK cells were trasduced with retroviral vectors encoding for the CAR trasngene and their functionality was assessed in in vitro activation and cytotoxicity assays. RESULTS: We verified the functionality of the αCD38-CAR-NK cells against CD38+ cell lines and primary MM cells. Importantly, we demonstrated that αCD38-CAR-NK cells derived from patients with MM have increased activity against autologous MM samples ex vivo. CONCLUSIONS: Overall, our results highlight that incorporation of a functional αCD38-CAR construct into a suitable NK-cell expansion and activation protocol results in a potent and feasible immunotherapeutic strategy for the treatment of patients with MM.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Citocinas/metabolismo , Mieloma Múltiplo/terapia , Leucócitos Mononucleares/metabolismo , Células Matadoras Naturais , Fenótipo , Imunoterapia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Glob Chang Biol ; 29(12): 3433-3448, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946769

RESUMO

While the protected area (PA) covers >15% of the planet's terrestrial land area and continues to expand, factors determining its effectiveness in conserving endangered species are being debated. We investigated the links between direct anthropogenic pressures, socioeconomic settings, and the coverage of vertebrate taxa by China's PA network, and indicated that high socioeconomic status and low levels of human pressure correlate with high species coverage, with threatened mammals more effectively conserved than reptiles or amphibians. Positive links between conservation outcomes and socioeconomic progress appear linked to local livelihood improvements triggering positive perceptions of local PAs-aided further by ecological compensation and tourism schemes introduced in wealthy areas and reinforced by continued positive conservation outcomes. Socioeconomic development of China's less developed regions might assist regional PA efficiency and achievement of the Kunming-Montreal Global Biodiversity Framework, while also addressing potential shortcomings from an insufficient past focus on socioeconomic impacts for biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Humanos , Biodiversidade , Mamíferos , Fatores Socioeconômicos , China , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA