Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 280(Pt 3): 135877, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317290

RESUMO

Phanerochaete chrysosporium were immobilized in magnetic Fe3O4 nanoparticles and calcium alginate to form MC microspheres. The obtained MC microsphere was characterized by SEM, EDS, XRD, BET, VSM and TGA. The results indicated that MC microsphere was a three-dimensional structure with relatively large specific surface area and good porosity. MC microspheres had excellent magnetic recovery performance and thermal stability. The characteristics and performance of MC microspheres on adsorption of Cu2+ were evaluated based on batch adsorption experiments. The maximum adsorption capacity of Cu2+ by MC microspheres was 35.07 mg g-1 at pH of 5.0, temperature of 35 °C and adsorption time of 8 h. MC microspheres can still effectively adsorb Cu2+ at 400 mg L-1. Integrating simulation results from pseudo-second-order kinetic model, Intra-particle diffusion model and Freundlich model, the process was mainly dominated by chemical adsorption, and it is a multi-molecular layer adsorption. The results of XPS and FTIR showed that complexation, ion replacement, and reduction are important mechanisms for adsorption of Cu2+ on MC microspheres. -OH and C-O/C=O mainly complexes with Cu2+ in the biosorption process. After five adsorption-desorption cycles, the adsorption efficiency can still reach 32.40 %. Therefore, MC microspheres are a potential adsorbent that can achieve effective recovery.

2.
iScience ; 27(8): 110491, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39171291

RESUMO

Dual-ion batteries (DIBs) offer high energy density due to the ability to intercalate both anions and cations, thereby increasing the cutoff voltage and battery capacity. Graphite, with its ordered layered structure and cost-effectiveness, is commonly employed as the cathode material for DIBs. However, the discharge capacity of graphite cathodes is relatively low, and their cycling stability is poor, limiting the practical applications of DIBs. The formation of cathode electrolyte interphase (CEI) on the graphite cathode surface is closely related to anion behavior. Constructing a stable cathode electrolyte interface is crucial for improving the stability of anion storage. Therefore, we introduce a series of strategies to enhance the quality of the CEI layer, including additives, binders, main salts or solvents, high-concentration electrolytes, doping elements, artificial CEI, and graphite surface modifications. These strategies improve the CEI by enhancing anion transport rates, increasing anion solvation capabilities, and improving the structural stability of graphite cathodes, which is of profound significance for increasing the capacity and stability of DIBs. This review provides inspiration for future CEI research, encouraging further exploration of resources of CEI components and improvement strategies to further promote the development of DIBs technology.

3.
J Colloid Interface Sci ; 678(Pt A): 284-291, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39208756

RESUMO

The irreversibility and low utilization of Zn anode stemming from the corrosion and dendrite growth have largely limited the commercialization of aqueous zinc batteries. Here, a carbonyl-rich polymer interphase of zinc polyacrylate (ZPAA) is spontaneously in-situ constructed on Zn anode to address the above-mentioned dilemmas. The ZPAA interlayer enables fast transport kinetics of Zn2+ and tailors the interfacial electric field for realizing the uniform Zn deposition due to superior zincophilicity, high Zn2+ transference number and inherent ion-diffusion channel. Importantly, acting as a buffer interphase with strong adhesion and isolation of electrolytes, this functional layer effectively protects the Zn electrode against the water-induced erosion and passivation. Remarkably, the ZPAA@Zn electrode realizes an enhanced Coulombic efficiency of 99.71 % within 2200 cycles, delivers an ultra-long cycling stability over 7660 h (>319 days, 1 mA cm-2) and 2460 h (5 mA cm-2) with lower voltage hysteresis. Also, the ZPAA@Zn/MnO2 full cell maintains a high capacity of 114 mAh/g after 2000 cycles, much better that of untreated Zn/MnO2 cell (25 mAh/g). This concept of in-situ fabricating ion-sieve-like polymer interphase provides a facile approach to stabilize Zn anode and further paves a way for high-performance aqueous batteries.

4.
Sci Rep ; 14(1): 15114, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956155

RESUMO

Wheat straw returning is a common agronomic measure in the farmland. Understanding organic carbon transformation is of great significance for carbon budget under the premise of widespread distribution of cadmium (Cd) contaminated soils. An incubation experiment was conducted to assess the influence of Cd contamination on the decomposition and accumulation of total organic carbon (TOC) as well as the composition and abundance of bacterial communities in eight soil types with wheat straw addition. The results showed that inhibition of Cd contamination on microbially mediated organic carbon decomposition was affected by soil types. The lower cumulative C mineralization and higher TOC content could be observed in the acidic soils relative to that in the alkaline soils. The content of Cd in soil exhibits different effects on the inhibition in decomposition of TOC. The high dosage level of Cd had stronger inhibitory impact due to its high toxicity. The decomposition of TOC was restricted by a reduction in soil bacterial abundance and weakening of bacterial activities. Redundancy analysis (RDA) indicated that Proteobacteria and Gemmatimonadetes were abundant in alkaline Cd-contaminated soils with wheat straw addition, while Bacteroidetes dominated cumulative C mineralization in acidic Cd-contamination soils. Moreover, the abundance of predicted functional bacteria indicated that high-dose Cd-contamination and acid environment all inhibited the decomposition of TOC. The present study suggested that pH played an important role on carbon dynamics in the Cd-contaminated soils with wheat straw addition.


Assuntos
Cádmio , Carbono , Microbiologia do Solo , Poluentes do Solo , Solo , Triticum , Cádmio/metabolismo , Cádmio/análise , Triticum/metabolismo , Triticum/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Carbono/metabolismo , Carbono/análise , Solo/química , Bactérias/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio
5.
Sci Rep ; 14(1): 15939, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987651

RESUMO

In order to grasp the influence of the pH value of mixing water and environmental water on the properties of ultra-high water materials, this article separately carried out the influence of different pH values of mixing water on the properties of ultra-high water materials and the conservation of high-water materials in water environments with different pH values. Using test methods such as loss of flow time, compressive strength, Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Thermogravimetric-Differential Thermal Analysis (TG-DTA), to conduct regular exploration and mechanism analysis. The study found that with the continuous increase of the pH value of the mixing water, the loss of flow time of the ultra-high water material gradually decreased, and the compressive strength of the samples at the same age continued to increase. A lower pH value will affect the compressive strength of the consolidated body of the ultra-high water material, but when the pH = 13 in the reaction solution, the compressive strength of the consolidated body will no longer increase and begin to produce a weakening effect. The pH of the construction water for ultra-high water materials is recommended to be 4-13. At the same time, it was found that under the conservation of an acidic environment, the consolidated body was severely eroded and the strength loss was large. The acid-base environment of the goaf suitable for filling with the ultra-high water material should be between pH = 7-10 to ensure that the filling body is not weakened by erosion.

6.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39066147

RESUMO

Road cracks significantly affect the serviceability and safety of roadways, especially in mountainous terrain. Traditional inspection methods, such as manual detection, are excessively time-consuming, labor-intensive, and inefficient. Additionally, multi-function detection vehicles equipped with diverse sensors are costly and unsuitable for mountainous roads, primarily because of the challenging terrain conditions characterized by frequent bends in the road. To address these challenges, this study proposes a customized Unmanned Aerial Vehicle (UAV) inspection system designed for automatic crack detection. This system focuses on enhancing autonomous capabilities in mountainous terrains by incorporating embedded algorithms for route planning, autonomous navigation, and automatic crack detection. The slide window method (SWM) is proposed to enhance the autonomous navigation of UAV flights by generating path planning on mountainous roads. This method compensates for GPS/IMU positioning errors, particularly in GPS-denied or GPS-drift scenarios. Moreover, the improved MRC-YOLOv8 algorithm is presented to conduct autonomous crack detection from UAV imagery in an on/offboard module. To validate the performance of our UAV inspection system, we conducted multiple experiments to evaluate its accuracy, robustness, and efficiency. The results of the experiments on automatic navigation demonstrate that our fusion method, in conjunction with SWM, effectively enables real-time route planning in GPS-denied mountainous terrains. The proposed system displays an average localization drift of 2.75% and a per-point local scanning error of 0.33 m over a distance of 1.5 km. Moreover, the experimental results on the road crack detection reveal that the MRC-YOLOv8 algorithm achieves an F1-Score of 87.4% and a mAP of 92.3%, thus surpassing other state-of-the-art models like YOLOv5s, YOLOv8n, and YOLOv9 by 1.2%, 1.3%, and 3.0% in terms of mAP, respectively. Furthermore, the parameters of the MRC-YOLOv8 algorithm indicate a volume reduction of 0.19(×106) compared to the original YOLOv8 model, thus enhancing its lightweight nature. The UAV inspection system proposed in this study serves as a valuable tool and technological guidance for the routine inspection of mountainous roads.

7.
Small ; 20(29): e2312167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634275

RESUMO

3D composite electrodes have shown extraordinary promise as high mass loading electrode materials for sodium ion batteries (SIBs). However, they usually show poor rate performance due to the sluggish Na+ kinetics at the heterointerfaces of the composites. Here, a 3D MXene-reduced holey graphene oxide (MXene-RHGO) composite electrode with Ti─O─C bonding at 2D heterointerfaces of MXene and RHGO is developed. Density functional theory (DFT) calculations reveal the built-in electric fields (BIEFs) are enhanced by the formation of bridged interfacial Ti─O─C bonding, that lead to not only faster diffusion of Na+ at the heterointerfaces but also faster adsorption and migration of Na+ on the MXene surfaces. As a result, the 3D composite electrodes show impressive properties for fast Na+ storage. Under high current density of 10 mA cm-2, the 3D MXene-RHGO composite electrodes with high mass loading of 10 mg cm-2 achieve a strikingly high and stable areal capacity of 3 mAh cm-2, which is same as commercial LIBs and greatly exceeds that of most reported SIBs electrode materials. The work shows that rationally designed bonding at the heterointerfaces represents an effective strategy for promoting high mass loading 3D composites electrode materials forward toward practical SIBs applications.

8.
J Colloid Interface Sci ; 665: 711-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552586

RESUMO

Zn anodes suffer from the formation of uncontrolled dendrites aggravated by the uneven electric field and the insulating by-product accumulation in aqueous zinc-ion batteries (AZIBs). Here, an effective strategy implemented by 1-butyl-3-methylimidazolium hydrogen sulfate (BMIHSO4) additive is proposed to synergistically tune the crystallographic orientation of zinc deposition and suppress the formation of zinc hydroxide sulfate for enhancing the reversibility on Zn anode surface. As a competing cation, BMI+ is proved to preferably adsorb on Zn-electrode compared with H2O molecules, which shields the "tip effect" and inhibits the Zn-deposition agglomerations to inducing the horizontal growth along Zn (002) crystallographic texture. Simultaneously, the protonated BMIHSO4 additives could remove the detrimental OH- in real-time to fundamentally eliminate the accumulation of 6Zn(OH)2·ZnSO4·4H2O and Zn4SO4(OH)6·H2O on Zn anode surface. Consequently, Zn anode exhibits an ultra-long cycling stability of one year (8762 h) at 0.2 mA cm-2/0.2 mAh cm-2, 3600 h at 2 mA cm-2/2 mAh cm-2 with a high plating cumulative capacity of 3.6 Ah cm-2, and a high average Coulombic efficiency of 99.6 % throughout 1000 cycles. This work of regulating Zn deposition texture combined with eliminating notorious by-products could offer a desirable way for stabilizing the Zn-anode/electrolyte interface in AZIBs.

9.
ANZ J Surg ; 94(4): 733-742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504426

RESUMO

BACKGROUNDS: The lack of systematic classification and standard treatment principles for knee ankylosis prevents optimal treatments. This study explored treatments for type I (mild) knee joint ankylosis. METHOD: This retrospective study analysed patients with knee joint ankylosis admitted from March 2013 to January 2018 who underwent sequential arthroscopic release. RESULT: The 62 patients had 12-36 (average, 18) months of follow-up. Thirty-eight patients were released; of these, 18 were assisted by limited incision with partial quadriceps femoris expansion myotomy and released according to arthroscopy. Six patients underwent lengthening and release of the quadriceps femoris. All surgeries combined with full-course rehabilitation resulted in improved joint mobility. The range of motion (ROM) of the knee joint recovered to a range of 0° to 85°-140° (mean: 118.32 ± 9.42°) from the preoperative range of 30°-70° (mean: 45° ± 15.50°). The clinical effect was evaluated according to the Judet criteria at the final follow-up. The outcomes at the last follow-up (at least for 1 year) were excellent in 55 cases, good in six cases, and fair in one case. CONCLUSION: Sequential arthroscopic release, minimal selective invasion of limited incision of partial quadriceps femoris expansion myotomy, assisted by pie-crusting technique to release, or quadriceps femoris lengthening, and release surgery for type I knee joint ankylosis, accompanied by early rehabilitation training provided satisfactory results without significant complications.


Assuntos
Anquilose , Articulação do Joelho , Humanos , Estudos Retrospectivos , Articulação do Joelho/cirurgia , Anquilose/cirurgia , Anquilose/etiologia , Resultado do Tratamento , Artroscopia/efeitos adversos , Amplitude de Movimento Articular
10.
Neuroendocrinology ; 114(5): 411-422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228117

RESUMO

INTRODUCTION: Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS: We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS: In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS: Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.


Assuntos
Envelhecimento , Doença de Alzheimer , Modelos Animais de Doenças , Presenilina-1 , Hormônios Tireóideos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Envelhecimento/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Glândula Tireoide/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
11.
Front Cardiovasc Med ; 10: 1274976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124895

RESUMO

Background: Understanding the correlation between female breast cancer (BC) and the prevalence of coronary heart disease (CHD) is important for developing prevention strategies and reducing the burden of female social disease. This study aimed to evaluate the relationship between BC and CHD using data from the National Health and Nutrition Examination Survey (NHANES) database from 1999 to 2018. Methods: The study cohort included 16,149 eligible non-pregnant female participants aged 20 years or older. Logistic regression was used to analyze the relationship between BC and CHD, excluding the interaction between covariates and BC through hierarchical subgroup analysis. Results: The study found that participants with BC had a 2.30 times greater risk of developing CHD compared to those without BC [95% confidence interval (CI): 2.29-2.31]. After adjusting for all included covariates, BC was still significantly associated with CHD risk (odds ratio: 1.11, 95% CI: 1.10-1.12). When participants were stratified by age, education level, and prevalence of hypertension, it was evident that participants with BC had a higher risk of developing CHD compared to those without BC, although the effect of BC on CHD varied across stratification. Conclusions: Our study demonstrates the close relationship between CHD and female BC. Therefore, it is necessary to screen patients with CHD for BC and monitor BC survivors for the long-term risk of developing CHD.

12.
Sci Total Environ ; 903: 166274, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37582446

RESUMO

This study addresses the research gap in understanding the differences in straw decomposition and variations in humic substances (HS) extracted from various treatment conditions. The aim is to explore the potential of soluble straw HS in remediating heavy metal pollution in soils. The study characterizes straw decomposition structures using scanning electron microscopy (SEM) and X-ray diffraction (XRD), while employing gel permeation chromatography (GPC) and fluorescence spectroscopy (EEM) to analyze the molecular weight and degree of humification of extracted straw HS. The removal efficiency of HS for heavy metals is assessed, with a focus on aerobic humic substances (AE-HS) showing the highest potential for heavy metal removal. Spectral analysis and mass spectrometry analysis reveal the role of phenolic compounds, carboxylic acids, and aromatic compounds in AE-HS, forming humates or complexes to remove heavy metals from contaminated soil. Notably, the optimized AE-HS achieved the highest removal efficiency of 96.18 %, 82.75 %, 60.43 %, and 41.66 % for cadmium, copper, zinc, and lead, respectively. This study provides new insights into the preparation of straw for use as a heavy metal remover and has implications for the use of straw humic substances in soil remediation.

13.
Materials (Basel) ; 16(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37445066

RESUMO

Shear cracking in concrete box-girder bridges, which could cause excessive deflection during the serviceability limit state, cannot be effectively avoided by code-guided design. While elastic shear deformation only accounts for a small proportion of total deformation for un-cracked reinforced concrete (RC) beams, the magnitude of after-cracking shear deformation becomes comparable to flexural deformation for RC beams. However, there is still a lack of practical models to predict the after-cracking shear deformation of RC beams. First, six thin-webbed I beams were tested to investigate the shear stiffness degradation mechanism and the decrease ratio. Then, a very simple truss strut angle formula, which is the crucial parameter for shear stiffness, was established. Furthermore, a stiffness degradation rule for partially cracked beams was proposed considering the influence of concrete tension stiffening, which is essential for predicting the development process of after-cracking shear deformation. Finally, directly measured shear strains were used to validate the proposed shear stiffness model. The results showed that the shear stiffness drops to about 30~40% of the original stiffness after the first diagonal crack, and the remaining shear stiffness is only about 10% of the original one when the stirrup yields. Increasing the stirrup ratio is a more effective method to control shear stiffness degradation for diagonally cracked RC beams. Also, the proposed shear stiffness model well captures the main features of the shear stiffness degradation, and it provides a relatively accurate prediction of the equivalent shear stiffness at the post-cracking stage.

14.
BMC Genomics ; 24(1): 329, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322464

RESUMO

BACKGROUND: Branching is a plastic character that affects plant architecture and spatial structure. The trait is controlled by a variety of plant hormones through coordination with environmental signals. Plant AT-rich sequence and zinc-binding protein (PLATZ) is a transcription factor that plays an important role in plant growth and development. However, systematic research on the role of the PLATZ family in apple branching has not been conducted previously. RESULTS: In this study, a total of 17 PLATZ genes were identified and characterized from the apple genome. The 83 PLATZ proteins from apple, tomato, Arabidopsis, rice, and maize were classified into three groups based on the topological structure of the phylogenetic tree. The phylogenetic relationships, conserved motifs, gene structure, regulatory cis-acting elements, and microRNAs of the MdPLATZ family members were predicted. Expression analysis revealed that MdPLATZ genes exhibited distinct expression patterns in different tissues. The expression patterns of the MdPLATZ genes were systematically investigated in response to treatments that impact apple branching [thidazuron (TDZ) and decapitation]. The expression of MdPLATZ1, 6, 7, 8, 9, 15, and 16 was regulated during axillary bud outgrowth based on RNA-sequencing data obtained from apple axillary buds treated by decapitation or exogenous TDZ application. Quantitative real-time PCR analysis showed that MdPLATZ6 was strongly downregulated in response to the TDZ and decapitation treatments, however, MdPLATZ15 was significantly upregulated in response to TDZ, but exhibited little response to decapitation. Furthermore, the co-expression network showed that PLATZ might be involved in shoot branching by regulating branching-related genes or mediating cytokinin or auxin pathway. CONCLUSION: The results provide valuable information for further functional investigation of MdPLATZ genes in the control of axillary bud outgrowth in apple.


Assuntos
Decapitação , Malus , Malus/metabolismo , Filogenia , Decapitação/metabolismo , Genes de Plantas , Brotos de Planta/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Adv Sci (Weinh) ; 10(15): e2207426, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36950760

RESUMO

The intercalating of anions into cost-effective graphite electrode provides a high operating voltage, therefore, the dual-ion batteries (DIBs) as novel energy storage device has attracted much attention recently. The "graphene in graphite" has always existed in the graphite cathode of DIBs, but has rarely been researched. It is foreseeable that the graphene blisters with the intact lattice structure in the shell can utilize its ultra-high elastic stiffness and reversible lattice expansion for increasing the storage capacity of anions in the batteries. This review proposes an expected "blister model" by introducing the high elasticity of graphene blisters and its possible formation mechanism. The unique blisters composed of multilayer graphene that do not fall off on the graphite surface may become indispensable in nanotechnology in the future development of cathode materials for DIBs.

16.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556523

RESUMO

Accurate measurement of the material parameters of composite in a nondestructive manner is of great significance for evaluating mechanical performance. This study proposes to use a genetic algorithm (GA) to reconstruct the stiffness matrix of carbon fiber reinforced polymer (CFRP) with array-guided wave (GW)-based GA. By comparing the numerically calculated GW dispersion curves with the experimental wave number-frequency contour calculated with a two-dimensional Fourier transform (2D-FFT), the matching coefficient is directly obtained as the objective function of the GA, avoiding the overhead of sorting out the respective GW modes. Then the measured stiffness matrix with tensile testing and the longitudinal wave in the unidirectional CFRP is compared with the reconstructed parameters from unidirectional, cross-ply, and quasi-isotropic CFRPs with the GA. For the four independent parameters, excluding C12, an average value of 11.62% for the maximum deviation is achieved among the CFRPs with three stacking sequences, and an average deviation of 11.03% in unidirectional CFRPs is achieved for the parameters measured with different methods. A further correction of fiber orientation results in a relative deviation of only 2.72% for the elastic modulus along the tensile direction, and an expansion of the GW frequency range for the GA narrows down the relative deviation of C12 to 3.9%. The proposed GW-based GA opens up a way of in situ and nondestructive measurement for the composite stiffness matrix.

17.
Sheng Wu Gong Cheng Xue Bao ; 38(10): 3728-3739, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36305406

RESUMO

The PEPC family proteins are ubiquitous in various plants and play an important role in the process of photosynthetic carbon assimilation and have many non-photosynthetic biological functions. However, PEPC genes have not been reported in apple. In this study, the members of apple MdPEPC family were identified based on the new apple genome data by bioinformatics analysis, and their expression patterns in different tissues and the apple axillary bud transcriptome treated by decapitation and TDZ (cytokinin) were analyzed in order to explore the role of MdPEPC genes in apple axillary bud outgrowth. The results showed that 6 MdPEPC family members were identified in apple, which distributed on 6 different chromosomes, and had similar physicochemical characteristics. Phylogenetic tree and sequence alignment analysis showed that the MdPEPC could be divided into two subgroups (Group Ⅰ and Group Ⅱ), in which four members in MdPEPC family were clustered into Group Ⅰ, belonging to plant-type PEPCs. However, MdPEPC4 and MdPEPC5 were clustered into Group Ⅱ with AtPPC4, belonging to bacterial-type PEPCs. There were 7 pairs of fragments repeats among MdPEPC members, but no tandem repeats existed. The promoter cis-acting element analysis showed that MdPEPC genes were not only affected by light and stress, but also regulated by multiple hormones. The expression profiles showed that all MdPEPCs except MdPEPC4 and MdPEPC5 were expressed in different apple tissues. Transcriptome data analysis showed that the expression levels of MdPEPC1 and MdPEPC3 were up-regulated after decapitation and TDZ treatment, whereas MdPEPC2 was significantly down-regulated at 48 h after treatments. In conclusion, MdPEPC1, MdPEPC2 and MdPEPC3 were selected as the candidate genes involved in axillary bud outgrowth regulation for further study.


Assuntos
Malus , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Gland Surg ; 11(8): 1404-1414, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36082102

RESUMO

Background: With the advances in organ transplantation technology and the increased number of organ recipients, more organ transplant recipients are living longer. However, many newly-onset thyroid cancer cases have been found among this population. The question remains in the uncertainty in whether the post-transplant thyroid cancer is more pathologically aggressive than the thyroid cancer in non-organ-transplant recipients. We compared the clinicopathological features of papillary thyroid carcinoma (PTC) between solid organ transplant recipients (SOTR) and the general population, in an attempt to improve the detection rate of post-transplant PTC in SOTR and overall survival prognosis of those patients. Methods: The clinical data of 408 PTC patients in the First Affiliated Hospital of Zhejiang University School of Medicine from July 2013 to April 2019 were retrospectively analyzed. The clinicopathological features were compared between non-organ-transplant recipients with PTC (group A, n=380) and SOTR with newly-onset PTC (group B, n=31) using Chi-square test, Fisher's exact test, Student's t-test, and logistic regression. Results: There were significant differences between these two groups in central compartment lymph node metastasis (P=0.005), multifocality (P=0.003), and maximum tumor diameter (P=0.007). Compared with group A, group B had a higher rate of tumor multifocality, higher rate of lymph node metastasis, and smaller tumor size. In addition, PTC in group B was more aggressive in biological behaviors such as tumor multifocality and lymph node metastasis. Conclusions: Compared with the general population, PTC after SORT demonstrate a more malignant pathological feature. The examination rate of thyroid cancer in SORT should be increased to improve the overall prognosis after solid organ transplant.

20.
Int J Chron Obstruct Pulmon Dis ; 17: 1601-1612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860812

RESUMO

Introduction: Chronic obstructive pulmonary disease (COPD) and lung cancer often coexist, but its pathophysiology and genomics features are still unclear. Methods: In this study, we retrospectively collected lung cancer concomitant COPD (COPD-LC) and non-COPD lung cancer (non-COPD-LC) patients, who performed next generation sequencing (NGS) and had clinicopathological information simultaneously. The COPD-LC data from the TCGA cohort were collected to conduct further analysis. Results: A total of 51 COPD-LC patients and 88 non-COPD-LC patients were included in the study. Clinicopathological analysis showed that proportion of male gender, older age, and smoking patients were all substantially higher in COPD-LC group than in non-COPD-LC group (all P<0.01). Comparing the genomic data of the two groups in our cohort, COPD-LC had higher mutation frequency of LRP1B (43% vs 9%, P = 0.001), EPHA5 (24% vs 1%, P = 0.002), PRKDC (14% vs 1%, P = 0.039), PREX2 (14% vs 0%, P = 0.012), and FAT1 (14% vs 0%, P = 0.012), which had a relationship with improved tumor immunity. Immunotherapy biomarker of PD-L1 positive expression (62.5% vs 52.0%, P = 0.397) and tumor mutation burden (TMB, median TMB: 7.09 vs 2.94, P = 0.004) also were higher in COPD-LC. In addition, RNA data from TCGA further indicated tumor immunity increased in COPD-LC. Whereas, COPD-LC had lower frequency of EGFR mutation (19% vs 50%, P = 0.013) and EGFR mutant COPD-LC treated with EGFR-TKI had worse progression-free survival (PFS) (HR = 3.52, 95% CI: 1.27-9.80, P = 0.01). Conclusion: In this retrospective study, we first explored molecular features of COPD-LC in a Chinese population. Although COPD-LC had lower EGFR mutant frequency and worse PFS with target treatment, high PD-L1 expression and TMB indicated these patients may benefit from immunotherapy.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Receptores ErbB/genética , Humanos , Masculino , Mutação , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA