Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738757

RESUMO

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Assuntos
Antibacterianos , Biofilmes , Indóis , NF-kappa B , Nanopartículas , Percepção de Quorum , Cicatrização , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Camundongos , NF-kappa B/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Percepção de Quorum/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Flavanonas/química , Flavanonas/farmacologia , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Polímeros/química , Polímeros/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Agentes de Imunomodulação/química , Agentes de Imunomodulação/farmacologia , Humanos
2.
Adv Healthc Mater ; : e2400545, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706444

RESUMO

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.

3.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793564

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Assuntos
Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , China , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Virulência , Evolução Molecular
4.
Molecules ; 29(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792266

RESUMO

The necessity to eliminate nickel (Ni) from wastewater stems from its environmental and health hazards. To enhance the Ni adsorption capacity, this research applied a copper sulfate-ammonia complex (tetraamminecopper (II) sulfate monohydrate, [Cu(NH3)4]SO4·H2O) as a modifying agent for a Phragmites australis-based activated carbon preparation. The physiochemical properties of powdered activated carbon (PAC) and a modified form ([Cu(NH3)4]-PAC) were examined by measuring their surface areas, analyzing their elemental composition, and using Boehm's titration method. Batch experiments were conducted to investigate the impact of various factors, such as Ni(II) concentration, contact time, pH, and ionic strength, on its substance adsorption capabilities. Additionally, the adsorption mechanisms of Ni(II) onto activated carbon were elucidated via Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The findings indicated that modified activated carbon ([Cu(NH3)4]-PAC) exhibited a lower surface area and total volume than the original activated carbon (PAC). The modification of PAC enhanced its surface's relative oxygen and nitrogen content, indicating the incorporation of functional groups containing these elements. Furthermore, the modified activated carbon, [Cu(NH3)4]-PAC, exhibited superior adsorption capacity relative to unmodified PAC. Both adsorbents' adsorption behaviors conformed to the Langmuir model and the pseudo-second-order kinetics model. The Ni(II) removal efficiency of PAC and [Cu(NH3)4]-PAC diminished progressively with rising ionic strength. Modified activated carbon [Cu(NH3)4]-PAC demonstrated notable pH buffering and adaptability. The adsorption mechanism for Ni(II) on activated carbon involves surface complexation, cation exchange, and electrostatic interaction. This research presents a cost-efficient preparation technique for preparing activated carbon with enhanced Ni(II) removal capabilities from wastewater and elucidates its underlying adsorption mechanisms.

5.
Biomed Pharmacother ; 175: 116645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729050

RESUMO

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Células de Schwann , Células de Schwann/fisiologia , Humanos , Animais , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Nervos Periféricos/fisiologia
6.
ACS Appl Mater Interfaces ; 16(19): 24351-24371, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690969

RESUMO

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.


Assuntos
Ácidos Borônicos , Diabetes Mellitus Experimental , Glucose , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Ácidos Borônicos/química , Glucose/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Agulhas , Insulina/administração & dosagem , Camundongos , Quitosana/química , Álcool de Polivinil/química , Ratos , Ácido Hialurônico/química , Masculino , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Sistemas de Liberação de Medicamentos , Ratos Sprague-Dawley , Humanos , Hidrogéis/química
7.
Int J Nanomedicine ; 19: 3441-3459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617798

RESUMO

Immune cells are pivotal in the dynamic interplay between hypoxia and inflammation. During hypoxic conditions, HIF-1α, a crucial transcription factor, facilitates the adaptation of immune cells to the hypoxic micro-environment. This adaptation includes regulating immune cell metabolism, significantly impacting inflammation development. Strategies for anti-inflammatory and hypoxic relief have been proposed, aiming to disrupt the hypoxia-inflammation nexus. Research extensively focuses on anti-inflammatory agents and materials that target immune cells. These primarily mitigate hypoxic inflammation by encouraging M2-macrophage polarization, restraining neutrophil proliferation and infiltration, and maintaining Treg/TH17 balance. Additionally, oxygen-releasing nano-materials play a significant role. By alleviating hypoxia and clearing reactive oxygen species (ROS), these nano-materials indirectly influence immune cell functions. This paper delves into the response of immune cells under hypoxic conditions and the resultant effects on inflammation. It provides a comprehensive overview of various therapies targeting specific immune cells for anti-inflammatory purposes and explores nano-materials that either carry or generate oxygen to alleviate anoxic micro-environments.


Assuntos
Hipóxia , Inflamação , Humanos , Inflamação/tratamento farmacológico , Oxigênio , Ativação de Macrófagos , Anti-Inflamatórios/farmacologia
8.
Int J Pharm ; 651: 123778, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181990

RESUMO

To identify a replacement strategy for bronchial thermoplasty (BT) with non-invasive and free-of-severe side effect is urgently needed in the clinic for severe asthma treatment. In this study, PLGA-PEG@ICG@TRPV1 pAb (PIT) photothermal nanoparticles targeting bronchial TRPV1 were designed for photothermal therapy (PTT) against severe murine asthma induced by ovalbumin and lipopolysaccharide. PIT was formulated with a polyethylene glycol (PEG)-grafted poly (lactic-co-glycolic) acid (PLGA) coating as a skeleton structure to encapsulate indocyanine green (ICG) and was conjugated to the polyclonal antibody against transient receptor potential vanilloid 1 (TRPV1 pAb). The results revealed that PIT held good druggability due to its electronegativity and small diameter. PIT demonstrated great photothermal effects both in vivo and in vitro and exhibited good ability to target TRPV1 in vitro because of its selective cell uptake and specific cell toxicity toward TRPV1-overexpressing cells. The PIT treatment effectively reduced asthma symptoms in mice. This is evident from improvements in expiratory airflow limitation, significant decreases in inflammatory cell infiltration in the airways, and increases in goblet cell and columnar epithelial cell proliferation. In conclusion, PIT alleviates severe murine asthma symptoms through a combination of TRPV1 targeting and photothermal effects.


Assuntos
Antineoplásicos , Asma , Nanopartículas , Animais , Camundongos , Verde de Indocianina , Fototerapia/métodos , Ovalbumina , Lipopolissacarídeos , Nanopartículas/química , Polietilenoglicóis/química , Asma/tratamento farmacológico , Linhagem Celular Tumoral , Canais de Cátion TRPV
9.
Chem Sci ; 14(39): 10953-10961, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829007

RESUMO

Plasmonic metal nanocrystals (e.g., Au, Ag, and Cu) hold great promise for driving photocatalytic reactions, but little is known about the plasmonic properties of Pd nanocrystals. Herein, we constructed a plasmonic Pd/Ru antenna-reactor photocatalyst through the controllable growth of a Ru nanoarray 'reactor' on a Pd nano-octahedron 'antenna' and demonstrated a plasmonic Pd-driven N2 photofixation process. The plasmonic properties of Pd nano-octahedrons were verified using finite-difference time-domain (FDTD) simulations and refractive index sensitivity tests in water-glycerol mixtures. Notably, the constructed plasmonic antenna-reactor nanostructures exhibited superior photocatalytic activities during N2 photofixation, with a maximum ammonia production rate of 117.5 ± 15.0 µmol g-1 h-1 under visible and near-infrared (NIR) light illumination. The mechanism can be attributed to the ability of the plasmonic Pd nanoantennas to harvest light to generate abundant hot electrons and the Ru nanoreactors to provide active sites for adsorption and activation of N2. This work paves the way for the development of Pd-based plasmonic photocatalysts for efficient N2 photofixation and sheds new light on the optimal design and construction of antenna-reactor nanostructures.

11.
Comput Biol Med ; 165: 107418, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37716243

RESUMO

Early detection of Sepsis is crucial for improving patient outcomes, as it is a significant public health concern that results in substantial morbidity and mortality. However, despite the widespread use of the Sequential Organ Failure Assessment (SOFA) in clinical settings to identify sepsis, obtaining sufficient physiological data before onset remains challenging, limiting early detection of sepsis. To address this challenge, we propose an interpretable machine learning model, ITFG (Interpretable Tree-based Feature Generation), that leverages potential correlations between features based on existing knowledge to identify sepsis within six hours of onset using valuable and continuous physiological measures. Furthermore, we introduce a Semi-supervised Attention-based Conditional Transfer Learning (SAC-TL) framework to enhance the model's generality and enable it to be used for early warning of sepsis in the target domain with less information from the source domain. Our proposed approaches effectively address the problem of systematic feature sparsity and missing data, while also being practical for different degrees of generalizability. We evaluated our proposed approaches on open datasets, MIMIC and PhysioNet, obtaining AUC of 97.98% and 86.21%, respectively, demonstrating their effectiveness in different data environments and achieving the best early detection results.


Assuntos
Sepse , Humanos , Sepse/diagnóstico , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina , Diagnóstico Precoce , Saúde Pública
12.
J Colloid Interface Sci ; 651: 319-333, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37544221

RESUMO

Diabetes-related chronic wounds characterized by hyperglycemia and weak alkaline milieu provide numerous advantages for bacteria growth and biofilm formation, setting a myriad of stumbling blocks for wound healing. Therefore, reshaping the spatially and temporally pathological wound microenvironment against bacterial infection is critical to rescue stalled healing progress in diabetes-related chronic wounds. Herein, we demonstrate on the room-temperature construction of a glucose oxidase (GOx)-mimicking and peroxidase (POD)-mimicking dual-nanozymes catalytic cascade system upon the partial reduction of Fe3+ to Fe2+ and the deposition of Au nanoparticles, simultaneously. The as-prepared dual-nanozymes catalytic cascade system possesses the capabilities of reshaping the pathological microenvironments of diabetic wound via glucose consumption and acidification, leading to amplified catalytic cascade activities for sterilization. On the one hand, the GOx-mimicking enzymatic activity of the catalytic cascade system can not only deplete glucose and acidize wound milieu to inhibit bacteria growth, but also utilize the weak alkaline milieu of diabetic wound to provide sufficient H2O2 and a favorable pH for subsequent OH generation. On the other hand, the POD-mimicking enzymatic activity of the catalytic cascade system can continuously produce OH for sterilization under the weak acidic milieu in the presence of abundant H2O2. Benefiting from the simply and mild preparation process and the excellent dual-nanozymes catalytic cascade activities under the deliberate evolved milieus of diabetes-related chronic wounds, our catalytic cascade system exhibits the promising healing effect and clinical translation potential against diabetic wound infection.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Infecção dos Ferimentos , Humanos , Biomimética , Ouro/química , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Glucose , Glucose Oxidase/química
13.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 14528-14545, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37607140

RESUMO

In this article, we present a large-scale detailed 3D face dataset, FaceScape, and the corresponding benchmark to evaluate single-view facial 3D reconstruction. By training on FaceScape data, a novel algorithm is proposed to predict elaborate riggable 3D face models from a single image input. FaceScape dataset releases 16,940 textured 3D faces, captured from 847 subjects and each with 20 specific expressions. The 3D models contain the pore-level facial geometry that is also processed to be topologically uniform. These fine 3D facial models can be represented as a 3D morphable model for coarse shapes and displacement maps for detailed geometry. Taking advantage of the large-scale and high-accuracy dataset, a novel algorithm is further proposed to learn the expression-specific dynamic details using a deep neural network. The learned relationship serves as the foundation of our 3D face prediction system from a single image input. Different from most previous methods, our predicted 3D models are riggable with highly detailed geometry under different expressions. We also use FaceScape data to generate the in-the-wild and in-the-lab benchmark to evaluate recent methods of single-view face reconstruction. The accuracy is reported and analyzed on the dimensions of camera pose and focal length, which provides a faithful and comprehensive evaluation and reveals new challenges. The unprecedented dataset, benchmark, and code have been released to the public for research purpose.


Assuntos
Face , Imageamento Tridimensional , Humanos , Imageamento Tridimensional/métodos , Face/diagnóstico por imagem , Benchmarking , Algoritmos , Bases de Dados Factuais
14.
Environ Sci Technol ; 57(30): 11218-11230, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470751

RESUMO

Nanoplastics (NPs), as an emerging contaminant, have usually been found charged in the environment, posing threats to aquatic animals. However, the underlying mechanisms governing the gut toxicity of differentially charged NPs to benthic insects are not well understood. In this study, the gut toxicity in larvae of Chironomus kiinensis exposed to negatively charged NPs (PS-COOH, 50 nm) and positively charged NPs (PS-NH2, 50 nm) at 0.1 and 1 g/kg was investigated through fluorescence imaging, histopathology, biochemical approaches, and 16S rRNA sequencing. The results showed that PS-NH2 caused more adverse effect on the larval growth performance and induced more severe oxidative stress, epithelial damage, and inflammatory responses in the gut than PS-COOH. The stronger impact caused by PS-NH2 was because the gut accumulated PS-NH2 more readily than PS-COOH for its negatively charged cell membrane. In addition, PS-NH2 were less agglomerated compared with PS-COOH, leading to an increased interaction with gut cell membranes and microbiota. Furthermore, alpha diversity and relative abundance of the keystone microbiota related to gut barrier and nutrient absorption were markedly lower exposed to PS-NH2 than PS-COOH, indirectly exacerbating stronger gut and growth damage. This study provides novel insights into the effect mechanisms underlying differentially charged NPs on benthic insects.


Assuntos
Chironomidae , Microbioma Gastrointestinal , Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos , RNA Ribossômico 16S/genética , Insetos , Larva/metabolismo , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade
15.
ISME J ; 17(8): 1303-1314, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286739

RESUMO

Ecological and evolutionary processes simultaneously regulate microbial diversity, but the evolutionary processes and their driving forces remain largely unexplored. Here we investigated the ecological and evolutionary characteristics of microbiota in hot springs spanning a broad temperature range (54.8-80 °C) by sequencing the 16S rRNA genes. Our results demonstrated that niche specialists and niche generalists are embedded in a complex interaction of ecological and evolutionary dynamics. On the thermal tolerance niche axis, thermal (T) sensitive (at a specific temperature) versus T-resistant (at least in five temperatures) species were characterized by different niche breadth, community abundance and dispersal potential, consequently differing in potential evolutionary trajectory. The niche-specialized T-sensitive species experienced strong temperature barriers, leading to completely species shift and high fitness but low abundant communities at each temperature ("home niche"), and such trade-offs thus reinforced peak performance, as evidenced by high speciation across temperatures and increasing diversification potential with temperature. In contrast, T-resistant species are advantageous of niche expansion but with poor local performance, as shown by wide niche breadth with high extinction, indicating these niche generalists are "jack-of-all-trades, master-of-none". Despite of such differences, the T-sensitive and T-resistant species are evolutionarily interacted. Specifically, the continuous transition from T-sensitive to T-resistant species insured the exclusion probability of T-resistant species at a relatively constant level across temperatures. The co-evolution and co-adaptation of T-sensitive and T-resistant species were in line with the red queen theory. Collectively, our findings demonstrate that high speciation of niche specialists could alleviate the environmental-filtering-induced negative effect on diversity.


Assuntos
Fontes Termais , RNA Ribossômico 16S/genética , Adaptação Fisiológica , Clima , Temperatura , Ecossistema , Evolução Biológica
16.
Sci Total Environ ; 890: 164171, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225097

RESUMO

Aquatic ecosystems are ubiquitously polluted and deteriorated by micro/nanoplastics (MPs/NPs) and their associated contaminants. However, the bioavailability of MPs/NPs and their associated hydrophobic organic contaminants (HOCs) remains largely unknown. This study employs passive dosing systems to study the bioavailability of differently-sized MPs (3 and 20 µm)/NPs (80 nm) and their associated polycyclic aromatic hydrocarbons (PAHs) to Daphnia magna, a model species in aquatic ecosystem. At constant concentrations of freely dissolved PAHs, the presence of MPs/NPs raises the immobilization of D. magna to 71.1-80.0 %, far higher than their counterparts caused by PAHs (24.4 %) or MPs (20.0-24.4 %)/NPs (15.5 %). It demonstrates that the MPs/NPs-associated PAHs are bioavailable, acting as a key contributor (37.1-50.0 %) for the overall immobilization. Interestingly, although the immobilization of D. magna caused by MPs is higher than NPs, the bioavailability of MPs/NPs-associated PAHs declines with plastic size. Such a trend is due to the fact that MPs are actively ingested but hardly egested; while NPs are passively ingested and rapidly egested, leading to a continuous and higher accessibility of NPs-associated PAHs to D. magna. These findings clarify an integrated role of ingestion and egestion in controlling the bioavailability of MPs/NPs and their associated HOCs. Further, this study suggests that MPs/NPs-associated HOCs should be primarily concerned in chemical risk assessment in aquatic ecosystem. Accordingly, both ingestion and egestion of MPs/NPs by aquatic species should be addressed in future studies.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Plásticos , Ecossistema , Daphnia , Microplásticos , Disponibilidade Biológica , Poluentes Químicos da Água/análise , Ingestão de Alimentos
17.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175732

RESUMO

The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.


Assuntos
Regeneração Óssea , Osso e Ossos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Engenharia Tecidual , Humanos , Regeneração Óssea/genética , Regeneração Óssea/fisiologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio
18.
Nanoscale ; 15(17): 7894-7908, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060139

RESUMO

Periodontitis is an inflammatory disease, mainly caused by the formation of a subgingival plaque biofilm. In recent years, growing attention has been paid to immunotherapy in the treatment of periodontitis, and the importance of communal intervention associated with macrophage polarization was emphasized. Herein, resveratrol (RES) and 20(S)-protopanaxadiol (PPD) were successfully self-assembled into RES@PPD nanoparticles (NPs) by the phenolic resin reaction. RES@PPD NPs have good stability and biocompatibility. The combined application of PPD and RES enhances the anti-inflammatory and antioxidant properties of nanocomposites, remarkably reduces the level of reactive oxygen species, and finally realizes the coordinated regulation of host immunity in periodontitis. The detailed mechanism is as follows: RES@PPD NPs inhibit M1 polarization of macrophages, promote M2 polarization by scavenging ROS, and then inhibit the NF-κB signalling pathway to regulate host immunity. In the animal model of periodontitis, RES@PPD NPs can remarkably decrease the level of pro-inflammatory cytokines, up-regulate the anti-inflammatory cytokines, and exhibit a profound therapeutic effect on local inflammation. Therefore, RES@PPD NPs are effective in antioxidation and anti-inflammation, thus providing a promising candidate drug for the treatment of periodontitis.


Assuntos
Nanopartículas , Periodontite , Animais , Resveratrol/farmacologia , Macrófagos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fenótipo , Citocinas/metabolismo , Periodontite/tratamento farmacológico
19.
Environ Microbiome ; 18(1): 22, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949539

RESUMO

Diverse mineralogical compositions occur in hot spring sediments, but the impact of minerals on the diversity and structure of microbial communities remains poorly elucidated. In this study, different mineral particles with various chemistries (i.e., hematite, biotite, K-feldspar, quartz, muscovite, aragonite, serpentine, olivine, barite, apatite, and pyrite) were incubated for ten days in two Tengchong hot springs, one alkaline (pH ~ 8.34) with a high temperature (~ 82.8 °C) (Gumingquan, short as GMQ) and one acidic (pH ~ 3.63) with a relatively low temperature (~ 43.3 °C) (Wenguangting, short as WGT), to determine the impacts of minerals on the microbial communities taxonomic and functional diversities. Results showed that the mineral-associated bacterial taxa differed from those of the bulk sediment samples in the two hot springs. The relative abundance of Proteobacteria, Euryarchaeota, and Acidobacteria increased in all minerals, indicating that these microorganisms are apt to colonize on solid surfaces. The α-diversity indices of the microbial communities on the mineral surfaces in the WGT were higher than those from the bulk sediment samples (p < 0.05), which may be caused by the stochastically adhering process on the mineral surface during 10-day incubation, different from the microbial community in sediment which has experienced long-term environmental and ecological screening. Chemoheterotrophy increased with minerals incubation, which was high in most cultured minerals (the relative contents were 5.8 - 21.4%). Most notably, the sulfate respiration bacteria (mainly related to Desulfobulbaceae and Syntrophaceae) associated with aragonite in the acidic hot spring significantly differed from other minerals, possibly due to the pH buffering effect of aragonite providing more favorable conditions for their survival and proliferation. By comparison, aragonite cultured in the alkaline hot spring highly enriched denitrifying bacteria and may have promoted the nitrogen cycle within the system. Collectively, we speculated that diverse microbes stochastically adhered on the surface of minerals in the water flows, and the physicochemical properties of minerals drove the enrichment of certain microbial communities and functional groups during the short-term incubation. Taken together, these findings thereby provide novel insights into mechanisms of community assembly and element cycling in the terrestrial hydrothermal system associated with hot springs.

20.
Environ Sci Pollut Res Int ; 30(16): 45555-45569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807038

RESUMO

With the global reduction actions of greenhouse gas (GHG) emissions, environmental facilities, including sewage treatment plants (STPs), need to reduce pollutants while minimizing GHG emissions. Therefore, more and more publications revealed the formation mechanism of GHGs in STPs and committed to finding better reduction schemes. From the perspective of bibliometrics, this study used CiteSpace to conduct quantitative and visual analysis based on 1,543 publications retrieved from Web of Science between 2000 and 2021 around the world. We have systematically evaluated the structure, development trend, hot spots, and research frontier in the field of GHG emissions from STPs and compared with the contents of top journals to verify the scientificity of the analysis. The results show that the number of publications has increased year by year, and the networks of authors and institutions show a strong correlation. Among them, the clusters of nitrous oxide, anaerobic digestion, and life cycle assessment (LCA) started earlier and received extensive attention, which derived other clusters in the research process. With the development of the field, researchers have gradually changed from single water treatment facilities to multi-carriers that can realize energy regeneration and utilization simultaneously. Accordingly, the GHG reduction of STPs through energy regeneration and resource recovery has become a hot point and frontier direction, which also challenges the breakthroughs in relevant technologies. Furthermore, it provides scientific support for the formulation of relevant incentive policies and economic subsidy systems, so as to alleviate the pressure of global warming and realize the sustainable development of STPs concurrently.


Assuntos
Gases de Efeito Estufa , Esgotos , Efeito Estufa , Óxido Nitroso/análise , Bibliometria , Metano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA