Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Restor Neurol Neurosci ; 42(2): 151-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39213108

RESUMO

Background: Spinal cord injury (SCI) results in lesions that destroy tissue and spinal tracts, leading to deficits in locomotor and autonomic function. We have previously shown that after SCI, surviving motoneurons innervating hindlimb muscles exhibit extensive dendritic atrophy, which can be attenuated by treadmill training or treatment with gonadal hormones post-injury. We have also shown that following SCI, both exercise and treatment with gonadal hormones improve urinary function. Animals exercised with forced running wheel training show improved urinary function as measured by bladder cystometry and sphincter electromyography, and treatment with gonadal hormones improves voiding patterns as measured by metabolic cage testing. Objective: The objective of the current study was to examine the potential protective effects of exercise or hormone treatment on the structure and function of motoneurons innervating the external urethral sphincter (EUS) after contusive SCI. Methods: Gonadally intact young adult male rats received either a sham or a thoracic contusion injury. Immediately after injury, one cohort of animals was implanted with subcutaneous Silastic capsules filled with estradiol (E) and dihydrotestosterone (D) or left blank; continuous hormone treatment occurred for 4 weeks post-injury. A separate cohort of SCI-animals received either 12 weeks of forced wheel running exercise or no exercise treatment starting two weeks after injury. At the end of treatment, urinary void volume was measured using metabolic cages and EUS motoneurons were labeled with cholera toxin-conjugated horseradish peroxidase, allowing for assessment of dendritic morphology in three dimensions. Results: Locomotor performance was improved in exercised animals after SCI. Void volumes increased after SCI in all animals; void volume was unaffected by treatment with exercise, but was dramatically improved by treatment with E + D. Similar to what we have previously reported for hindlimb motoneurons after SCI, dendritic length of EUS motoneurons was significantly decreased after SCI compared to sham animals. Exercise did not reverse injury-induced atrophy, however E + D treatment significantly protected dendritic length. Conclusions: These results suggest that some aspects of urinary dysfunction after SCI can be improved through treatment with gonadal hormones, potentially through their effects on EUS motoneurons. Moreover, a more comprehensive treatment regime that addresses multiple SCI-induced sequelae, i.e., locomotor and voiding deficits, would include both hormones and exercise.


Assuntos
Neurônios Motores , Condicionamento Físico Animal , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Uretra , Micção , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Neurônios Motores/patologia , Masculino , Uretra/efeitos dos fármacos , Uretra/patologia , Micção/efeitos dos fármacos , Micção/fisiologia , Ratos , Condicionamento Físico Animal/fisiologia , Estradiol/farmacologia , Modelos Animais de Doenças , Terapia por Exercício/métodos
2.
Int J Nanomedicine ; 19: 8641-8660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188861

RESUMO

Osteosarcoma is the predominant primary malignant bone tumor that poses a significant global health challenge. MicroRNAs (miRNAs) that regulate gene expression are associated with osteosarcoma pathogenesis. Thus, miRNAs are potential therapeutic targets for osteosarcoma. Nanoparticles, widely used for targeted drug delivery, facilitate miRNA-based osteosarcoma treatment. Numerous studies have focused on miRNA delivery using nanoparticles to inhibit the progress of osteosarcoma. Polymer-based, lipid-based, inorganic-based nanoparticles and extracellular vesicles were used to deliver miRNAs for the treatment of osteosarcoma. They can be modified to enhance drug loading and delivery capabilities. Also, miRNA delivery was combined with traditional therapies, for example chemotherapy, to treat osteosarcoma. Consequently, miRNA delivery offers promising therapeutic avenues for osteosarcoma, providing renewed hope for patients. This review emphasizes the studies utilizing nanoparticles for miRNA delivery in osteosarcoma treatment, then introduced and summarized the nanoparticles in detail. And it also discusses the prospects for clinical applications.


Assuntos
Neoplasias Ósseas , MicroRNAs , Nanopartículas , Osteossarcoma , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/terapia , Humanos , MicroRNAs/administração & dosagem , MicroRNAs/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/tratamento farmacológico , Nanopartículas/química , Animais , Sistemas de Liberação de Medicamentos/métodos
3.
Animals (Basel) ; 14(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998040

RESUMO

This article proposes and analyzes a fractional-order African Swine Fever model with saturation incidence. Firstly, the existence and uniqueness of a positive solution is proven. Secondly, the basic reproduction number and the sufficient conditions for the existence of two equilibriums are obtained. Thirdly, the local and global stability of disease-free equilibrium is studied using the LaSalle invariance principle. Next, some numerical simulations are conducted based on the Adams-type predictor-corrector method to verify the theoretical results, and sensitivity analysis is performed on some parameters. Finally, discussions and conclusions are presented. The theoretical results show that the value of the fractional derivative α will affect both the coordinates of the equilibriums and the speed at which the equilibriums move towards stabilization. When the value of α becomes larger or smaller, the stability of the equilibriums will be changed, which shows the difference between the fractional-order systems and the classical integer-order system.

4.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995011

RESUMO

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Assuntos
Axônios , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Células de Schwann , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células de Schwann/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Axônios/metabolismo , Ratos , Ratos Sprague-Dawley , Feminino , Astrócitos/metabolismo
5.
J Am Chem Soc ; 146(29): 20080-20085, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001844

RESUMO

The utility of antibody therapeutics is hampered by potential cross-reactivity with healthy tissue. Over the past decade, significant advances have been made in the design of activatable antibodies, which increase, or create altogether, the therapeutic window of a parent antibody. Of these, antibody prodrugs (pro-antibodies) are masked antibodies that have advanced the most for therapeutic use. They are designed to reveal the active, parent antibody only when encountering proteases upregulated in the microenvironment of the targeted disease tissue, thereby minimizing off-target activity. However, current pro-antibody designs are relegated to fusion proteins that append masking groups restricted to the use of only canonical amino acids, offering excellent control of the site of introduction, but with no authority over where the masking group is installed other than the N-terminus of the antibody. Here, we present a palladium-based bioconjugation approach for the site-specific introduction of a masked tyrosine mimic in the complementary determining region of the FDA approved antibody therapeutic ipilimumab used as a model system. The approach enables the introduction of a protease cleavable group tethered to noncanonical polymers (polyethylene glycol (PEG)) resulting in 47-fold weaker binding to cells expressing CTLA-4, the target antigen of ipilimumab. Upon exposure to tumor-associated proteases, the masking group is cleaved, unveiling a tyrosine-mimic (dubbed hydroxyphenyl cysteine (HPC)) that restores (>90% restoration) binding affinity to its target antigen.


Assuntos
Pró-Fármacos , Tirosina , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Humanos , Tirosina/química , Paládio/química , Estrutura Molecular , Imunoconjugados/química
6.
Small ; : e2403523, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966876

RESUMO

Natural and artificial enzyme oxygen-generating systems for photodynamic therapy (PDT) are developed for tumor treatment, yet they have fallen short of the desired efficacy. Moreover, both the enzymes and photosensitizers usually need carriers for efficient delivery to tumor sites. Here, a self-cascade-enhanced multimodal tumor therapy is developed by ingeniously integrating self-cascade-enhanced PDT with Zn2+-overloading therapy. Manganese-porphyrin (TCPP-Mn) is chosen both as the photosensitizer and catalase (CAT) mimic, which can be encapsulated within glucose oxidase (GOx). Acid-responsive zeolitic imidazolate framework-8 (ZIF-8) is applied as the carrier for TCPP-Mn@GOx (T@G), attaining TCPP-Mn@GOx@ZIF-8 (T@G@Z). T@G@Z demonstrates robust anti-tumor ability as follows: upon the structural degradation of ZIF-8, GOx can mediate the oxidation of glucose and generate hydrogen peroxide (H2O2); TCPP-Mn can catalyze H2O2 into O2 for self-cascade-enhanced PDT; meanwhile, the released Zn2+ can enhance oxidative stress and induce mitochondrial dysfunction by destroying mitochondrial membrane potential; furthermore, immunotherapy can be activated to resist primary tumor and tumor metastasis. The self-cascade-enhanced T@G@Z exhibited its potential application for further tumor management.

7.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912798

RESUMO

Accurate measurement of urinary parameters in awake mice is crucial for understanding lower urinary tract (LUT) dysfunction, particularly in conditions like neurogenic bladder post-traumatic spinal cord injury (SCI). However, conducting cystometry recordings in mice presents notable challenges. When mice are in a prone and restricted position during recording sessions, urine tends to be absorbed by the fur and skin, leading to an underestimation of voided volume (VV). The goal of this study was to enhance the accuracy of cystometry and external urethral sphincter electromyography (EUS-EMG) recordings in awake mice. We developed a unique method utilizing cyanoacrylate adhesive to create a waterproof skin barrier around the urethral meatus and abdomen, preventing urine absorption and ensuring precise measurements. Results show that after applying the cyanoacrylate, the sum of VV and RV remained consistent with the infused saline volume, and there were no wet areas observed post-experiment, indicating successful prevention of urine absorption. Additionally, the method simultaneously stabilized the electrodes connected with the external urethral sphincter (EUS), ensured stable electromyography (EMG) signals, and minimized artifacts caused by the movement of the awakened mouse and manipulation of the experimenter. Methodological details, results, and implications are discussed, highlighting the importance of improving urodynamic techniques in preclinical research.


Assuntos
Eletromiografia , Urodinâmica , Animais , Camundongos , Urodinâmica/fisiologia , Eletromiografia/métodos , Uretra/fisiologia , Feminino
8.
Sci Rep ; 14(1): 9178, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649759

RESUMO

Studies seem to show that high-intensity interval training (HIIT) is a more time-efficient protocol for weight loss, compared with moderate-intensity continuous training (MICT). Our aim was to compare the acute effects of energy expenditure (EE) matched HIIT vs. MICT on excess post-exercise oxygen consumption (EPOC) and substrate metabolism in male college students with obesity. Twenty-one untrained male college students (age, 22 ± 3 years; body fat, 28.4 ± 4.5%) completed two acute interventions (~ 300 kcal) on a treadmill in a randomized order: (1) HIIT: 3 min bouts at 90% of maximal oxygen uptake (VO2max) with 2 min of recovery at 25% of VO2max; (2) MICT: 60% of VO2max continuous training. EPOC and substrate metabolism were measured by indirect calorimetry during and 30 min after exercise. Results showed that EPOC was higher after HIIT (66.20 ± 14.36 kcal) compared to MICT (53.91 ± 12.63 kcal, p = 0.045), especially in the first 10 min after exercise (HIIT: 45.91 ± 9.64 kcal and MICT: 34.39 ± 7.22 kcal, p = 0.041). Lipid oxidation rate was higher after HIIT (1.01 ± 0.43 mg/kg/min) compared to MICT (0.76 ± 0.46 mg/kg/min, p = 0.003). Moreover, the percentage of energy from lipid was higher after HIIT (37.94 ± 14.21%) compared to MICT (30.09 ± 13.54%, p = 0.020). We conclude that HIIT results in greater total EE and EPOC, as well as higher percentage of energy from lipid during EPOC than EE matched MICT in male college students with obesity.


Assuntos
Metabolismo Energético , Treinamento Intervalado de Alta Intensidade , Metabolismo dos Lipídeos , Obesidade , Oxirredução , Consumo de Oxigênio , Corrida , Humanos , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Adulto Jovem , Corrida/fisiologia , Adulto , Treinamento Intervalado de Alta Intensidade/métodos , Exercício Físico/fisiologia
9.
J Cancer ; 15(7): 1826-1836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434975

RESUMO

Background: Previous studies have showed that lycorine can restrain the development of multiple tumor types, containing hepatocellular carcinoma (HCC), but the underlying mechanisms remain unknown. Methods: We assessed the impact of lycorine on hepatocellular cancer cell proliferation, migration, colony formation, cell cycle, and apoptosis. The possible inhibitory effect of lycorine on the activity of HCC cells was analyzed by RNA-seq, and transketolase (TKT) expression in HCC and nontumorous tissues was detected using RT-PCR. The expression of TKT protein in HCC and tumor adjacent non-cancerous tissues was detected by immunohistochemistry. We evaluated the association of expression of TKT in HCC tissues with prognosis, and investigated the inhibitory effect of lycorine on tumor growth in vivo. Results: Lycorine significantly inhibited the proliferation, invasion, migration, colony formation, cell cycle of HCC cells, but had no obvious impact on apoptosis. Twenty-eight genes were found to be down-regulated in HuH7 and HepG2 cells after lycorine treatment, and the difference of TKT gene expression was significantly. The expression of TKT protein was significantly higher in HCC than in non-tumorous tissues. The expression of TKT was correlated with tumor size, Edmondson grade, AFP, and overall survival. Survival analysis suggested that high expression of TKT was associated with a poor survival. The average tumor volume and weight were significantly reduced in the lycorine injection group, but the body weights of the mice did not change significantly. Conclusion: Lycorine can restrict the migration and proliferation of HCC cells by down-regulating TKT expression, and it may be a potential meaningful drug for the prevention and treatment of HCC.

10.
ACS Nano ; 18(12): 9019-9030, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483200

RESUMO

Urinary tract infections (UTIs), common bacterial infections in communities and medical facilities, are mainly mediated by FimH. The glycan sites of the uromodulin protein play a crucial role in protecting against UTIs by interacting with FimH. A bioinspired approach using glycan-FimH interactions may effectively reduce bacteria through an antiadhesive mechanism, thereby curbing bacterial resistance. However, typical antiadhesive therapy alone fails to address the excessive reactive oxygen species and inflammatory response during UTIs. To bridge this gap, antioxidant nanozymes with antiadhesive ability were developed as nanodecoys to counter bacteria and inflammation. Specifically, ultrasmall dextran-coated ceria (DEC) was engineered to address UTIs, with dextran blocking FimH adhesion and ceria exhibiting anti-inflammatory properties. DECs, metabolizable by the kidneys, reduced bacterial content in the urinary tract, mitigating inflammation and tissue damage. In murine models, DECs successfully treated acute UTIs, repeated infections, and catheter-related UTIs. This dual approach not only highlights the potential of nanozymes for UTIs but also suggests applicability to other FimH-induced infections in the lungs and bowels, marking a significant advancement in nanozyme-based clinical approaches.


Assuntos
Adesinas de Escherichia coli , Infecções Urinárias , Camundongos , Humanos , Animais , Adesinas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Dextranos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Inflamação , Antibacterianos
11.
Carbohydr Polym ; 332: 121897, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431408

RESUMO

Cancer multidrug resistance (MDR) dramatically hindered the efficiency of standard chemotherapy. Mitochondria are highly involved in the occurrence and development of MDR; thus, inducing its malfunction will be an appealing strategy to treat MDR tumors. In this paper, a natural polysaccharides-based nanoplatform (TDTD@UA/HA micelles) with cell and mitochondria dual-targeting ability was facilely fabricated to co-deliver ursolic acid (UA) and doxorubicin (DOX) for combinatorial MDR therapy. TDTD@UA/HA micelles featured a spherical morphology, narrow size distribution (∼140 nm), as well as favorable drug co-loading capacity (DOX: 8.41 %, UA: 9.06 %). After hyaluronic acid (HA)-mediated endocytosis, the lysosomal hyaluronidase promoted the degradation of HA layer and then the positive triphenylphosphine groups were exposed, which significantly enhanced the mitochondria-accumulation of nano micelles. Subsequently, DOX and UA were specifically released into mitochondria under the trigger of endogenous reactive oxygen species (ROS), followed by severe mitochondrial destruction through generating ROS, exhausting mitochondrial membrane potential, and blocking energy supply, etc.; ultimately contributing to the susceptibility restoration of MCF-7/ADR cells to chemotherapeutic agents. Importantly, TDTD@UA/HA micelles performed potent anticancer efficacy without distinct toxicity on the MDR tumor-bearing nude mice model. Overall, the versatile nanomedicine represented a new therapeutic paradigm and held great promise in overcoming MDR-related cancer.


Assuntos
Micelas , Neoplasias , Humanos , Animais , Camundongos , Ácido Ursólico , Ácido Hialurônico/farmacologia , Dextranos/metabolismo , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Polímeros/metabolismo , Células MCF-7 , Mitocôndrias , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico
12.
Chem Sci ; 15(5): 1679-1691, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303952

RESUMO

Intrinsically conductive ruthenium oxide is an excellent material for energy storage and conversion. Herein, we present hydrous RuO2 (H-RuO2) as a potent reducing agent to achieve spontaneous growth of multiple noble metals at room temperature. Self-assembled gold and platinum, comprising small-sized nanoparticles, are generated on the surface of H-RuO2 without the need for additional templates. Structural analysis reveals that the disordered structure and the presence of oxygen vacancies trigger interfacial redox reactions between H-RuO2 and oxidative metal salts. The resulting integrated nanostructures, consisting of a metal oxide and different metals (H-RuO2@metal), are subsequently used to treat inflammatory bowel diseases. In addition to biomedical applications, our developed synthetic strategy, using reactive oxides to spontaneously generate multicomponent nanostructures, also holds great significance for other catalysis-based applications.

13.
Nano Lett ; 24(7): 2289-2298, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38341876

RESUMO

Antibiotic therapeutics to combat intestinal pathogen infections often exacerbate microbiota dysbiosis and impair mucosal barrier functions. Probiotics are promising strategies, because they inhibit pathogen colonization and improve intestinal microbiota imbalance. Nevertheless, their limited targeting ability and susceptibility to oxidative stress have hindered their therapeutic potential. To tackle these challenges, Ces3 is synthesized by in situ growth of CeO2 nanozymes with positive charges on probiotic spores, facilitating electrostatic interactions with negatively charged pathogens and possessing a high reactive oxygen species (ROS) scavenging activity. Importantly, Ces3 can resist the harsh environment of the gastrointestinal tract. In mice with S. Typhimurium-infected acute gastroenteritis, Ces3 shows potent anti-S. Typhimurium activity, thereby alleviating the dissemination of S. Typhimurium into other organs. Additionally, owing to its O2 deprivation capacity, Ces3 promotes the proliferation of anaerobic probiotics, reshaping a healthy intestinal microbiota. This work demonstrates the promise of combining antibacterial, anti-inflammatory, and O2 content regulation properties for acute gastroenteritis therapy.


Assuntos
Gastroenterite , Probióticos , Animais , Camundongos , Intestinos , Gastroenterite/tratamento farmacológico , Gastroenterite/microbiologia , Antibacterianos/uso terapêutico , Probióticos/uso terapêutico , Esporos
14.
ACS Nano ; 18(6): 5206-5217, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294412

RESUMO

The structure and electronic state of the active center in a single-atom catalyst undergo noticeable changes during a dynamic catalytic process. The metal atom active center is not well demonstrated in a dynamic manner. This study demonstrated that Li metal atoms, serving as active centers, can migrate on a C3N4 monolayer or between C3N4 monolayers when exposed to light irradiation. This migration alters the local coordination environment of Li in the C3N4 nanosheets, leading to a significant enhancement in photocatalytic activity. The photocatalytic H2O2 process could be maintained for 35 h with a 920 mmol/g record-high yield, corresponding to a 0.4% H2O2 concentration, which is far greater than the value (0.1%) of practical application for wastewater treatment. Density functional theory calculations indicated that dynamic Li-coordinated structures contributed to the superhigh photocatalytic activity.

15.
Interface Focus ; 13(6): 20230035, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106919

RESUMO

A mutation to serine of a conserved threonine (T634S) in the hERG K+ channel S6 pore region has been identified as a variant of uncertain significance, showing a loss-of-function effect. However, its potential consequences for ventricular excitation and arrhythmogenesis have not been reported. This study evaluated possible functional effects of the T634S-hERG mutation on ventricular excitation and arrhythmogenesis by using multi-scale computer models of the human ventricle. A Markov chain model of the rapid delayed rectifier potassium current (IKr) was reconstructed for wild-type and T634S-hERG mutant conditions and incorporated into the ten Tusscher et al. models of human ventricles at cell and tissue (1D, 2D and 3D) levels. Possible functional impacts of the T634S-hERG mutation were evaluated by its effects on action potential durations (APDs) and their rate-dependence (APDr) at the cell level; and on the QT interval of pseudo-ECGs, tissue vulnerability to unidirectional conduction block (VW), spiral wave dynamics and repolarization dispersion at the tissue level. It was found that the T634S-hERG mutation prolonged cellular APDs, steepened APDr, prolonged the QT interval, increased VW, destablized re-entry and augmented repolarization dispersion across the ventricle. Collectively, these results imply potential pro-arrhythmic effects of the T634S-hERG mutation, consistent with LQT2.

16.
iScience ; 26(11): 108238, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37965154

RESUMO

Digestive disorders are a significant contributor to the global burden of disease and seriously affect human quality of life. Research has already confirmed the presence of pleiotropic genetic loci among digestive disorders, and studies have explored shared genetic factors among pan-cancers, including various malignant digestive disorders. However, most cross-phenotype studies within the digestive tract system have been limited to a few traits, with no systematic coverage of common benign and malignant digestive disorders. Here, we analyzed data from the UK Biobank to investigate 21 digestive disorders, exploring the genetic correlations and causal relationships between diseases, as well as the common genetic factors and potential biological pathways driving these relationships. Our findings confirmed the extensive genetic correlation and causal relationship between digestive disorders, providing important insights into the genetic etiology, causality, disease prevention, and clinical treatment of diseases.

17.
BMC Musculoskelet Disord ; 24(1): 868, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940993

RESUMO

BACKGROUND: The proximal femoral nail anti-rotation (PFNA) is a commonly used internal fixation system for intertrochanteric fractures (IFs) in older adults. Knee osteoarthritis (KOA) is a degenerative lower extremity disease that occurs most frequently in the elderly. Some patients have already had KOA before the IFs. However, whether KOA impacts the postoperative outcome of IFs has not been reported. OBJECTIVE: This study aimed to investigate the effect of KOA on the fracture side on the outcome after PFNA for IFs in the elderly. METHODS: Between January 2016 and November 2021, 297 elderly patients treated with PFNA for IFs were enrolled in this study. They were divided into two groups according to the American Rheumatism Association KOA clinical and radiographic criteria: the control group and the KOA group. Intraoperative bleeding, operative time, length of hospital stay, postoperative time out of bed, fracture healing time, postoperative complications, postoperative Harris hip function score, and Barthel ability to daily living Score were compared between the two groups. Follow-up was routinely scheduled at 1, 3, 6, and 12 months postoperatively. RESULTS: Based on the exclusion criteria, 254 patients who met the requirements were left to be included in this study, including the control group (n = 133) and the KOA group (n = 121). Patients were followed up for a mean of 17.5 months (12-24 months). There was no significant difference between the two groups in preoperative demographic data, intraoperative blood loss, operation time, and length of stay in the hospital. The control group was statistically significant compared to the KOA group in terms of postoperative time out of bed (17.8 ± 4.0 days vs. 19.1 ± 5.8 days), fracture healing time (13.7 ± 2.2 weeks vs. 14.6 ± 3.7 weeks), and postoperative complications (12.8 vs. 23.1%). The Harris hip function score and Barthel ability to daily living score were higher in the control group than in the KOA group at 1, 3, 6, and 12 months postoperatively (the control group: 63.8 ± 10.9, 71.8 ± 10.3, 81.5 ± 8.7, and 91.6 ± 6.3 vs. The KOA group 61.0 ± 10.4, 68.6 ± 9.1, 79.0 ± 9.2, and 88.5 ± 5.9). CONCLUSIONS: In elderly patients with IFs combined with KOA of the fracture side treated with PFNA internal fixation, KOA increases the incidence of postoperative complications of the fracture, prolongs postoperative time out of bed and fracture healing, and reduces postoperative hip function and ability to daily living. Therefore, treating KOA on the fractured side needs to be considered when treating IFs in the elderly.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Osteoartrite do Joelho , Humanos , Idoso , Estudos Retrospectivos , Resultado do Tratamento , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Pinos Ortopédicos , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
18.
Cancer Nurs ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37903303

RESUMO

BACKGROUND: A lack of identified core symptom clusters in digestive cancer patients hinders achieving precision symptom intervention. There are few studies on identifying digestive cancer symptom clusters based on network analysis. OBJECTIVES: The aims of this study were to construct the symptom network of digestive cancer patients and identify the core symptom cluster. METHODS: A cross-sectional study was conducted among 202 digestive cancer patients. The Chinese version of the MD Anderson Symptom Inventory for gastrointestinal cancer scale was used to assess the symptoms by convenience sampling. R software was used to construct a symptom network and identify core symptom clusters. Edge weight and centrality difference tests were used to test the accuracy of core symptom cluster identification. RESULTS: The most common symptoms were distress, poor appetite, and sadness. The most serious symptoms were poor appetite, disturbed sleep, and fatigue. The core symptom cluster of the psychoemotional symptom group was distress, sadness, and numbness. The centrality index showed that the top 3 in strength were distress (Rs = 1.11), fatigue (Rs = 1.09), and sadness (Rs = 1.04). The edge weight difference test showed that the psychoemotional symptom group had high stability. CONCLUSIONS: The psychoemotional symptoms of digestive cancer patients should be given priority for intervention. Network analysis must be extended to the symptom research of cancer patients as soon as possible to provide a scientific basis for symptom management. IMPLICATIONS FOR PRACTICE: Nurses must perform comprehensive psychological and emotional assessments, initiate referrals for psychoemotional symptom management and psychological services, and administer pharmacologic and nonpharmacologic interventions to improve appetite loss in digestive cancer patients.

19.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37765012

RESUMO

hERG (human Ether-à-go-go Related Gene)-encoded potassium channels underlie the cardiac rapid delayed rectifier (IKr) potassium current, which is a major target for antiarrhythmic agents and diverse non-cardiac drugs linked to the drug-induced form of long QT syndrome. E-4031 is a high potency hERG channel inhibitor from the methanesulphonanilide drug family. This study utilized a methanesulphonate-lacking E-4031 analogue, "E-4031-17", to evaluate the role of the methanesulphonamide group in E-4031 inhibition of hERG. Whole-cell patch-clamp measurements of the hERG current (IhERG) were made at physiological temperature from HEK 293 cells expressing wild-type (WT) and mutant hERG constructs. For E-4031, WT IhERG was inhibited by a half-maximal inhibitory concentration (IC50) of 15.8 nM, whilst the comparable value for E-4031-17 was 40.3 nM. Both compounds exhibited voltage- and time-dependent inhibition, but they differed in their response to successive applications of a long (10 s) depolarisation protocol, consistent with greater dissociation of E-4031-17 than the parent compound between applied commands. Voltage-dependent inactivation was left-ward voltage shifted for E-4031 but not for E-4031-17; however, inhibition by both compounds was strongly reduced by attenuated-inactivation mutations. Mutations of S6 and S5 aromatic residues (F656V, Y652A, F557L) greatly attenuated actions of both drugs. The S624A mutation also reduced IhERG inhibition by both molecules. Overall, these results demonstrate that the lack of a methanesulphonate in E-4031-17 is not an impediment to high potency inhibition of IhERG.

20.
Adv Mater ; 35(44): e2305555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584617

RESUMO

Efficiently balancing excess reactive oxygen species (ROS) caused by various factors on the ocular surface is a promising strategy for preventing the development of ocular surface diseases (OSDs). Nevertheless, the conventional topical administration of antioxidants is limited in efficacy due to poor absorption, rapid metabolism, and irreversible depletion, which impede their performance. To address this issue, contact lenses embedded with antioxidant nanozymes that can continuously scavenge ROS, thereby providing an excellent preventive effect against OSDs are developed. Specifically, Prussian blue family nanozymes are chosen based on their multiple antioxidant enzyme-like activities and excellent biocompatibility. The diverse range of colors made them promising candidates for the development of cosmetic contact lenses (CCLs) as a substitute for conventional pigments. The efficacy of nanozyme-CCLs is demonstrated in rabbits and rats exposed to a high risk of developing OSDs. These OSDs' prevention nanozyme-CCLs can pave the way for CCLs toward powerful wearable biomedical devices and provide novel strategies for the rational utilization of nanomaterials in clinical practice.


Assuntos
Lentes de Contato , Oftalmopatias , Nanoestruturas , Ratos , Animais , Coelhos , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Oftalmopatias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA