Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 304: 125-131, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29530713

RESUMO

The absence of selective pharmacological tools is a major barrier to the in vivo study of microglia. To address this issue, we developed a Gq- and Gi-coupled Designer Receptor Exclusively Activated by a Designer Drug (DREADD) to enable selective stimulation or inhibition of microglia, respectively. DREADDs under a CD68 (microglia/macrophage) promoter were intrathecally transfected via an AAV9 vector. Naïve male rats intrathecally transfected with Gq (stimulatory) DREADDs exhibited significant allodynia following intrathecal administration of the DREADD-selective ligand clozapine-N-oxide (CNO), which was abolished by intrathecal interleukin-1 receptor antagonist. Chronic constriction injury-induced allodynia was attenuated by intrathecal CNO in male rats intrathecally transfected with Gi (inhibitory) DREADDs. To explore mechanisms, BV2 cells were stably transfected with Gq or Gi DREADDs in vitro. CNO treatment induced pro-inflammatory mediator production per se from cells expressing Gq-DREADDs, and inhibited lipopolysaccharide- and CCL2-induced inflammatory signaling from cells expressing Gi-DREADDs. These studies are the first to manipulate microglia function using DREADDs, which allow the role of glia in pain to be conclusively demonstrated, unconfounded by neuronal off-target effects that exist for all other drugs that also inhibit glia. Hence, these studies are the first to conclusively demonstrate that in vivo stimulation of resident spinal microglia in intact spinal cord is a) sufficient for allodynia, and b) necessary for allodynia induced by peripheral nerve injury. DREADDs are a unique tool to selectively explore the physiological and pathological role of microglia in vivo.


Assuntos
Microglia/metabolismo , Neuralgia/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Drogas Desenhadas/farmacologia , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Microglia/efeitos dos fármacos , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Transfecção
2.
Proc Natl Acad Sci U S A ; 113(24): E3441-50, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247388

RESUMO

Opioid use for pain management has dramatically increased, with little assessment of potential pathophysiological consequences for the primary pain condition. Here, a short course of morphine, starting 10 d after injury in male rats, paradoxically and remarkably doubled the duration of chronic constriction injury (CCI)-allodynia, months after morphine ceased. No such effect of opioids on neuropathic pain has previously been reported. Using pharmacologic and genetic approaches, we discovered that the initiation and maintenance of this multimonth prolongation of neuropathic pain was mediated by a previously unidentified mechanism for spinal cord and pain-namely, morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflammasomes and associated release of interleukin-1ß (IL-1ß). As spinal dorsal horn microglia expressed this signaling platform, these cells were selectively inhibited in vivo after transfection with a novel Designer Receptor Exclusively Activated by Designer Drugs (DREADD). Multiday treatment with the DREADD-specific ligand clozapine-N-oxide prevented and enduringly reversed morphine-induced persistent sensitization for weeks to months after cessation of clozapine-N-oxide. These data demonstrate both the critical importance of microglia and that maintenance of chronic pain created by early exposure to opioids can be disrupted, resetting pain to normal. These data also provide strong support for the recent "two-hit hypothesis" of microglial priming, leading to exaggerated reactivity after the second challenge, documented here in the context of nerve injury followed by morphine. This study predicts that prolonged pain is an unrealized and clinically concerning consequence of the abundant use of opioids in chronic pain.


Assuntos
Dor Crônica/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Morfina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Dor Crônica/patologia , Dor Crônica/fisiopatologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Interleucina-1beta/metabolismo , Masculino , Microglia/patologia , Neuralgia/patologia , Neuralgia/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
3.
J Med Chem ; 58(12): 5038-52, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26010811

RESUMO

Activation of Toll-like receptors has been linked to neuropathic pain and opioid dependence. (+)-Naltrexone acts as a Toll-like receptor 4 (TLR4) antagonist and has been shown to reverse neuropathic pain in rat studies. We designed and synthesized compounds based on (+)-naltrexone and (+)-noroxymorphone and evaluated their TLR4 antagonist activities by their effects on inhibiting lipopolysaccharide (LPS) induced TLR4 downstream nitric oxide (NO) production in microglia BV-2 cells. Alteration of the N-substituent in (+)-noroxymorphone gave us a potent TLR4 antagonist. The most promising analog, (+)-N-phenethylnoroxymorphone ((4S,4aR,7aS,12bR)-4a,9-dihydroxy-3-phenethyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 1j) showed ∼75 times better TLR-4 antagonist activity than (+)-naltrexone, and the ratio of its cell viability IC50, a measure of its toxicity, to TLR-4 antagonist activity (140 µM/1.4 µM) was among the best of the new analogs. This compound (1j) was active in vivo; it significantly increased and prolonged morphine analgesia.


Assuntos
Morfinanos/química , Morfinanos/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Analgésicos Opioides/farmacologia , Animais , Linhagem Celular , Sinergismo Farmacológico , Humanos , Lipopolissacarídeos/imunologia , Masculino , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Morfina/farmacologia , Óxido Nítrico/imunologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Receptor 4 Toll-Like/imunologia
4.
Brain Behav Immun ; 44: 128-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25218902

RESUMO

We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signaling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and temporomandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest.


Assuntos
Glucuronídeos/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Dor/metabolismo , Receptor 4 Toll-Like/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Corticosterona/metabolismo , Estradiol/análogos & derivados , Estradiol/metabolismo , Células HEK293 , Humanos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Simulação de Acoplamento Molecular , Naloxona/farmacologia , Dor/etiologia , Estimulação Física , Ratos Sprague-Dawley , Receptor 4 Toll-Like/antagonistas & inibidores
5.
Neurosci Lett ; 543: 157-62, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23523650

RESUMO

Many studies have shown that minocycline, an antibacterial tetracycline, suppresses experimental pain. While minocycline's positive effects on pain resolution suggest that clinical use of such drugs may prove beneficial, minocycline's antibiotic actions and divalent cation (Ca(2+); Mg(2+)) chelating effects detract from its potential utility. Thus, we tested the antiallodynic effect induced by a non-antibacterial, non-chelating minocycline derivative in a model of neuropathic pain and performed an initial investigation of its anti-inflammatory effects in vitro. Intraperitoneal minocycline (100mg/kg) and 12S-hydroxy-1,12-pyrazolinominocycline (PMIN; 23.75 mg/kg, 47.50mg/kg or 95.00 mg/kg) reduce the mechanical allodynia induced by chronic constriction injury of mouse sciatic nerve. PMIN reduces the LPS-induced production of PGE2 by primary microglial cell cultures. Human embryonic kidney cells were transfected to express human toll-like receptors 2 and 4, and the signaling via both receptors stimulated with PAM3CSK4 or LPS (respectively) was affected either by minocycline or PMIN. Importantly, these treatments did not affect the cell viability, as assessed by MTT test. Altogether, these results reinforce the evidence that the anti-inflammatory and experimental pain suppressive effects induced by tetracyclines are neither necessarily linked to antibacterial nor to Ca(2+) chelating activities. This study supports the evaluation of the potential usefulness of PMIN in the management of neuropathic pain, as its lack of antibacterial and Ca(2+) chelating activities might confer greater safety over conventional tetracyclines.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dinoprostona/biossíntese , Hiperalgesia/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Nervo Isquiático/lesões , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Feminino , Humanos , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Minociclina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Estimulação Física , Ratos , Ratos Wistar , Nervo Isquiático/fisiopatologia , Transdução de Sinais , Tato
6.
Brain Behav Immun ; 30: 24-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23348028

RESUMO

We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.


Assuntos
Etanol/farmacologia , Ácido Glucurônico/farmacologia , Glucuronídeos/farmacologia , Dor/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Etanol/metabolismo , Células HEK293 , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Dor/metabolismo , Medição da Dor , Estimulação Física , Ratos , Ratos Sprague-Dawley
7.
PLoS One ; 7(10): e47703, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094078

RESUMO

The lateral transmembrane protein-protein interactions (PPI) have been regarded as "undruggable" despite their importance in many essential biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV). Herein we repurpose the antimicrobial agent pentamidine as a regulator of LMP-1 TMD-5 lateral interactions. The results of ToxR assay, tryptophan fluorescence assay, courmarin fluorescence dequenching assay, and Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) consistently show pentamidine disrupts LMP-1 TMD-5 lateral interactions. Furthermore, pentamidine inhibits LMP-1 signaling, inducing cellular apoptosis and suppressing cell proliferation in the EBV infected B cells. In contrast, EBV negative cells are less susceptible to pentamidine. This study provides a novel non-peptide small molecule agent for regulating LMP-1 TMD-5 lateral interactions.


Assuntos
Anti-Infecciosos/farmacologia , Linfócitos B/virologia , Herpesvirus Humano 4/química , Herpesvirus Humano 4/efeitos dos fármacos , Pentamidina/farmacologia , Proteínas da Matriz Viral/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Proteínas de Bactérias/genética , Bioensaio , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Plasmídeos , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Ativação Viral/efeitos dos fármacos
8.
J Pain ; 13(5): 498-506, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22520687

RESUMO

UNLABELLED: Previous work demonstrated that both the opioid antagonist (-)-naloxone and the non-opioid (+)-naloxone inhibit toll-like receptor 4 (TLR4) signaling and reverse neuropathic pain expressed shortly after chronic constriction injury. The present studies reveal that the TLR4 contributes to neuropathic pain in another major model (spinal nerve ligation) and to long established (2-4 months) neuropathic pain, not just to pain shortly after nerve damage. Additionally, analyses of plasma levels of (+)-naloxone after subcutaneous administration indicate that (+)-naloxone has comparable pharmacokinetics to (-)-naloxone with a relatively short half-life. This finding accounts for the rapid onset and short duration of allodynia reversal produced by subcutaneous (+)-naloxone. Given that toll-like receptor 2 (TLR2) has also recently been implicated in neuropathic pain, cell lines transfected with either TLR4 or TLR2, necessary co-signaling molecules, and a reporter gene were used to define whether (+)-naloxone effects could be accounted for by actions at TLR2 in addition to TLR4. (+)-Naloxone inhibited signaling by TLR4 but not TLR2. These studies provide evidence for broad involvement of TLR4 in neuropathic pain, both early after nerve damage and months later. Additional, they provide further support for the TLR4 inhibitor (+)-naloxone as a novel candidate for the treatment of neuropathic pain. PERSPECTIVE: These studies demonstrated that (+)-naloxone, a systemically available, blood-brain barrier permeable, small molecule TLR4 inhibitor can reverse neuropathic pain in rats, even months after nerve injury. These findings suggest that (+)-naloxone, or similar compounds, be considered as a candidate novel, first-in-class treatment for neuropathic pain.


Assuntos
Naloxona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Neuralgia/tratamento farmacológico , Receptor 4 Toll-Like/metabolismo , Fosfatase Alcalina/metabolismo , Análise de Variância , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Injeções Subcutâneas , Lipopeptídeos/toxicidade , Lipopolissacarídeos/toxicidade , Masculino , Naloxona/sangue , Naloxona/farmacocinética , Antagonistas de Entorpecentes/sangue , Antagonistas de Entorpecentes/farmacocinética , Neuralgia/induzido quimicamente , Neuralgia/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Fatores de Tempo , Receptor 4 Toll-Like/antagonistas & inibidores
9.
Brain Behav Immun ; 24(1): 83-95, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19679181

RESUMO

Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.


Assuntos
Analgésicos Opioides/farmacologia , Antígeno 96 de Linfócito/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Analgesia , Animais , Linhagem Celular , Simulação por Computador , Temperatura Alta , Hiperalgesia/psicologia , Bombas de Infusão , Injeções Espinhais , Antígeno 96 de Linfócito/agonistas , Antígeno 96 de Linfócito/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/psicologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores , Transfecção
10.
Brain Behav Immun ; 22(8): 1248-56, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18706994

RESUMO

Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here, we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force, and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation.


Assuntos
Analgesia , Minociclina/farmacologia , Morfina/farmacologia , Insuficiência Respiratória/tratamento farmacológico , Recompensa , Análise de Variância , Animais , Linhagem Celular , Células Cultivadas , Condicionamento Operante/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Minociclina/uso terapêutico , Entorpecentes/farmacologia , Dor/tratamento farmacológico , Medição da Dor , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Comportamento Espacial/efeitos dos fármacos
11.
Brain Behav Immun ; 22(8): 1178-89, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18599265

RESUMO

Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.


Assuntos
Analgesia , Citocinas/metabolismo , Morfina/farmacologia , Dor/imunologia , Analgésicos Opioides/farmacologia , Animais , Cateteres de Demora , Quimiocina CX3CL1/imunologia , Citocinas/líquido cefalorraquidiano , Hiperalgesia/tratamento farmacológico , Injeções Espinhais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-1/imunologia , Masculino , Metadona/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor , Limiar da Dor/efeitos dos fármacos , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/metabolismo , Fatores de Tempo
12.
Eur J Neurosci ; 28(1): 20-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18662331

RESUMO

Although activated spinal cord glia contribute importantly to neuropathic pain, how nerve injury activates glia remains controversial. It has recently been proposed, on the basis of genetic approaches, that toll-like receptor 4 (TLR4) may be a key receptor for initiating microglial activation following L5 spinal nerve injury. The present studies extend this idea pharmacologically by showing that TLR4 is key for maintaining neuropathic pain following sciatic nerve chronic constriction injury (CCI). Established neuropathic pain was reversed by intrathecally delivered TLR4 receptor antagonists derived from lipopolysaccharide. Additionally, (+)-naltrexone, (+)-naloxone, and (-)-naloxone, which we show here to be TLR4 antagonists in vitro on both stably transfected HEK293-TLR4 and microglial cell lines, suppressed neuropathic pain with complete reversal upon chronic infusion. Immunohistochemical analyses of spinal cords following chronic infusion revealed suppression of CCI-induced microglial activation by (+)-naloxone and (-)-naloxone, paralleling reversal of neuropathic pain. Together, these CCI data support the conclusion that neuron-to-glia signaling through TLR4 is important not only for initiating neuropathic pain, as suggested previously, but also for maintaining established neuropathic pain. Furthermore, these studies suggest that the novel TLR4 antagonists (+)-naloxone and (-)-naloxone can each fully reverse established neuropathic pain upon multi-day administration. This finding with (+)-naloxone is of potential clinical relevance. This is because (+)-naloxone is an antagonist that is inactive at the (-)-opioid selective receptors on neurons that produce analgesia. Thus, these data suggest that (+)-opioid antagonists such as (+)-naloxone may be useful clinically to suppress glial activation, yet (-)-opioid agonists suppress pain.


Assuntos
Naloxona/uso terapêutico , Naltrexona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Dor , Receptor 4 Toll-Like/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Biomarcadores/metabolismo , Linhagem Celular , Humanos , Injeções Espinhais , Masculino , Microglia/metabolismo , Naloxona/metabolismo , Naloxona/farmacologia , Naltrexona/metabolismo , Naltrexona/farmacologia , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/antagonistas & inibidores
13.
Carbohydr Res ; 341(10): 1447-57, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-16650392

RESUMO

Poly-N-acetyllactosamines (pLNs) are common terminal sugars of many N- and O-linked glycan structures present in glycoproteins and glycolipids. Utilizing various glycosyltransferases, we developed new and efficient chemoenzymatic methods for the synthesis of pLNs in gram-scale. Specifically, the use of sialyltransferases and fucosyltransferases enabled us to synthesize and purify 24 blood group and tumor-associated pLN derivatives with alpha-(2-->3)- and alpha-(2-->6)-linked sialic acid, as well as with alpha-(1-->2)- and alpha-(1-->3)-linked fucose. All synthesized derivatives were linked to a short 2-azidoethyl spacer for further modification.


Assuntos
Antígenos de Neoplasias/biossíntese , Antígenos de Grupos Sanguíneos/biossíntese , Polissacarídeos/síntese química , Fucosiltransferases/metabolismo , Polissacarídeos/biossíntese , Sialiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA