RESUMO
Alzheimer's Disease (AD) is a neurodegenerative disorder, and various molecules associated with PANoptosis are involved in neuroinflammation and neurodegenerative diseases. This work aims to identify key genes, and characterize PANoptosis-related molecular subtypes in AD. Moreover, we establish a scoring system for distinguishing PANoptosis molecular subtypes and constructing diagnostic models for AD differentiation. A total of 5 hippocampal datasets were obtained from the Gene Expression Omnibus (GEO) database. In total, 1324 protein-encoding genes associated with PANoptosis (1313 apoptosis genes, 11 necroptosis genes, and 31 pyroptosis genes) were extracted from the GeneCards database. The Limma package was used to identify differentially expressed genes. Weighted Gene Co-Expression Network Analysis (WGCNA) was conducted to identify gene modules significantly associated with AD. The ConsensusClusterPlus algorithm was used to identify AD subtypes. Gene Set Variation Analysis (GSVA) was used to assess functional and pathway differences among the subtypes. The Boruta, Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to select the three PANoptosis-related Key AD genes (PKADg). A scoring model was constructed based on the Boruta algorithm. PANoptosis diagnostic models were developed using the RF, SVM-RFE, and Logistic Regression (LR) algorithms. The ROC curves were used to assess the model performance. A total of 48 important genes were identified by intersecting 725 differentially expressed genes and 2127 highly correlated module genes from WGCNA with 1324 protein-encoding genes related to PANoptosis. Machine learning algorithms identified 3 key AD genes related to PANoptosis, including ANGPT1, STEAP3, and TNFRSF11B. These genes had strong discriminatory capacities among samples, with Receiver Operating Characteristic Curve (ROC) analysis indicating Area Under the Curve (AUC) values of 0.839, 0.8, and 0.868, respectively. Using the 48 important genes, the ConsensusClusterPlus algorithm identified 2 PANoptosis subtypes among AD patients, i.e., apoptosis subtype and mild subtype. Apoptosis subtype patients displayed evident cellular apoptosis and severe functionality damage in the hippocampal tissue. Meanwhile, mild subtype patients showed milder functionality damage. These two subtypes had significant differences in apoptosis and necroptosis; however, there was no apparent variation in pyroptosis functionality. The scoring model achieved an AUC of 100% for sample differentiation. The RF PANoptosis diagnostic model demonstrated an AUC of 100% in the training set and 85.85% in the validation set for distinguishing AD. This study identified two PANoptosis-related hippocampal molecular subtypes of AD, identified key genes, and established machine learning models for subtype differentiation and discrimination of AD. We found that in the context of AD, PANoptosis may influence disease progression through the modulation of apoptosis and necrotic apoptosis.
Assuntos
Doença de Alzheimer , Biomarcadores , Hipocampo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Humanos , Hipocampo/metabolismo , Hipocampo/patologia , Biomarcadores/metabolismo , Necroptose/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Algoritmos , Bases de Dados Genéticas , Curva ROC , Apoptose/genéticaRESUMO
BACKGROUND: Mycoplasma pneumoniae is a significant cause of respiratory infections in children, often leading to severe pneumonia. This study aimed to assess the clinical relevance of interferon-gamma (interferon-γ), D-dimer, lactate dehydrogenase (LDH), and C-reactive protein (CRP) as biomarkers in the severity of mycoplasma pneumonia in pediatric patients. METHODS: In this prospective study, 203 pediatric patients with mycoplasma pneumonia were classified into mild (123 patients) and severe (80 patients) groups. Biomarkers including interferon-γ, D-dimer, LDH, and CRP were measured and analyzed. Statistical methods employed included Pearson and Spearman correlation analyses, logistic regression, and receiver operating characteristic curve analysis. RESULTS: The severe group exhibited significantly higher median and interquartile ranges for interferon-γ, D-dimer, LDH, and CRP compared to the mild group. Logistic regression identified IL-10, IL-6, interferon-γ, tumor necrosis factor-alpha, D-dimer, and LDH as independent predictors of severity, with the model achieving 92% accuracy. Receiver operating characteristic curve analysis showed optimal diagnostic efficacy for interferon-γ, D-dimer, and LDH, with the best threshold values being 8.11, 0.64, and 379, respectively. A significant positive correlation was observed between IL-6 and LDH, as well as between interferon-γ and D-dimer. CONCLUSION: This study showed that interferon-γ >8.11, D-dimer >0.64, and LDH >379 have an important role in the assessment of severe mycoplasma pneumonia.
Assuntos
Biomarcadores , Proteína C-Reativa , Produtos de Degradação da Fibrina e do Fibrinogênio , Interferon gama , L-Lactato Desidrogenase , Pneumonia por Mycoplasma , Índice de Gravidade de Doença , Humanos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/sangue , Masculino , Feminino , Proteína C-Reativa/análise , Estudos Prospectivos , Criança , L-Lactato Desidrogenase/sangue , Interferon gama/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Biomarcadores/sangue , Pré-Escolar , Curva ROC , Mycoplasma pneumoniae , Relevância ClínicaRESUMO
Dental age estimation is extensively employed in forensic medicine practice. However, the accuracy of conventional methods fails to satisfy the need for precision, particularly when estimating the age of adults. Herein, we propose an approach for age estimation utilizing orthopantomograms (OPGs). We propose a new dental dataset comprising OPGs of 27,957 individuals (16,383 females and 11,574 males), covering an age range from newborn to 93 years. The age annotations were meticulously verified using ID card details. Considering the distinct nature of dental data, we analyzed various neural network components to accurately estimate age, such as optimal network depth, convolution kernel size, multi-branch architecture, and early layer feature reuse. Building upon the exploration of distinctive characteristics, we further employed the widely recognized method to identify models for dental age prediction. Consequently, we discovered two sets of models: one exhibiting superior performance, and the other being lightweight. The proposed approaches, namely AGENet and AGE-SPOS, demonstrated remarkable superiority and effectiveness in our experimental results. The proposed models, AGENet and AGE-SPOS, showed exceptional effectiveness in our experiments. AGENet outperformed other CNN models significantly by achieving outstanding results. Compared to Inception-v4, with the mean absolute error (MAE) of 1.70 and 20.46 B FLOPs, our AGENet reduced the FLOPs by 2.7×. The lightweight model, AGE-SPOS, achieved an MAE of 1.80 years with only 0.95 B FLOPs, surpassing MobileNetV2 by 0.18 years while utilizing fewer computational operations. In summary, we employed an effective DNN searching method for forensic age estimation, and our methodology and findings hold significant implications for age estimation with oral imaging.
RESUMO
With continuous advancements in the zero-waste strategy in China, transportation of fresh municipal solid waste to landfills has ceased in most first-tier cities. Consequently, the production of landfill gas has sharply declined because the supply of organic matter has decreased, rendering power generation facilities idle. However, by incorporating liquefied kitchen and food waste (LKFW), sustainable methane production can be achieved while consuming organic wastewater. In this study, LKFW and water (as a control group) were periodically injected into high and low organic wastes, respectively. The biochemical characteristics of the resulting gas and leachate were analyzed. LKFW used in this research generated 19.5-37.6 L of methane per liter in the post-methane production phase, highlighting the effectiveness of LKFW injection in enhancing the methane-producing capacity of the system. The release of H2S was prominent during both the rapid and post-methane production phases, whereas that of NH3 was prominent in the post-methane production phase. As injection continued, the concentrations of chemical oxygen demand, 5-d biological oxygen demand, total organic carbon, ammonia nitrogen, total nitrogen, and oil in the output leachate decreased and eventually reached levels comparable to those in the water injection cases. After nine rounds of injections, the biologically degradable matter of the two LKFW-injected wastes decreased by 8.2 % and 15.1 %, respectively. This study sheds light on determining the organic load, controlling odor, and assessing the biochemical characteristics of leachate during LKFW injection.
Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos , Alimentos , Reatores Biológicos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Metano/análise , Água , NitrogênioRESUMO
To build up a collective emission, the atoms in an ensemble must coordinate their behavior by exchanging virtual photons. We study this non-Markovian process in a subwavelength atom chain coupled to a one-dimensional (1D) waveguide and find that retardation is not the only cause of non-Markovianity. The other factor is the memory of the photonic environment, for which a single excited atom needs a finite time, the Zeno regime, to transition from quadratic decay to exponential decay. In the waveguide setup, this crossover has a time scale longer than the retardation, thus impacting the development of collective behavior. By comparing a full quantum treatment with an approach incorporating only the retardation effect, we find that the field memory effect, characterized by the population of atomic excitation, is much more pronounced in collective emissions than that in the decay of a single atom. Our results maybe useful for the dissipation engineering of quantum information processings based on compact atom arrays.
RESUMO
ABSTRACT: The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 (Orc6), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/ ß-catenin signaling. Western blot revealed that the expression of ß-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/ß-catenin signaling.
RESUMO
The 5-hydroxytryptamine 7 receptor (5-HT7R) is one of the most recently cloned serotonin receptors which have been implicated in many physiological and pathological processes including drug addiction. Behavioral sensitization is the progressive process during which re-exposure to drugs intensified the behavioral and neurochemical responses to drugs. Our previous study has demonstrated that the ventrolateral orbital cortex (VLO) is critical for morphine-induced reinforcing effect. The aim of the present study was to investigate the effect of 5-HT7Rs in the VLO on morphine-induced behavioral sensitization and their underlying molecular mechanisms. Our results showed that a single injection of morphine, followed by a low challenge dose could induce behavioral sensitization. Microinjection of the selective 5-HT7R agonist AS-19 into the VLO during the development phase significantly increased morphine-induced hyperactivity. Microinjection of the 5-HT7R antagonist SB-269970 suppressed acute morphine-induced hyperactivity and the induction of behavioral sensitization, but had no effect on the expression of behavioral sensitization. In addition, the phosphorylation of AKT (Ser 473) was increased during the expression phase of morphine-induced behavioral sensitization. Suppression of the induction phase could also block the increase of p-AKT (Ser 473). In conclusion, we demonstrated that 5-HT7Rs and p-AKT in the VLO at least partially contribute to morphine-induced behavioral sensitization.
Assuntos
Morfina , Serotonina , Ratos , Animais , Serotonina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismoRESUMO
Catalysts with designable intelligent nanostructure may potentially drive the changes in chemical reaction techniques. Herein, a multi-function integrating nanocatalyst, Pt-containing magnetic yolk-shell carbonaceous structure, having catalysis function, microenvironment heating, thermal insulation, and elevated pressure into a whole is designed, which induces selective hydrogenation within heating-constrained nanoreactors surrounded by ambient environment. As a demonstration, carbonyl of α, ß-unsaturated aldehydes/ketones are selectively hydrogenated to unsaturated alcohols with a >98% selectivity at a nearly complete conversion under mild conditions of 40 °C and 3 bar instead of harsh requirements of 120 °C and 30 bar. It is creatively demonstrated that the locally increased temperature and endogenous pressure (estimated as ≈120 °C, 9.7 bar) in the nano-sized space greatly facilitate the reaction kinetics under an alternating magnetic field. The outward-diffused products to the "cool environment" remain thermodynamically stable, avoiding the over-hydrogenation that often occurs under constantly heated conditions of 120 °C. Regulation of the electronic state of Pt by sulfur doping of carbon allows selective chemical adsorption of the CO group and consequently leads to selective hydrogenation. It is expected that such a multi-function integrated catalyst provides an ideal platform for precisely operating a variety of organic liquid-phase transformations under mild reaction conditions.
RESUMO
Neurofilament light chain (NF-L) plays critical roles in synapses that are relevant to neuropsychiatric diseases. Despite postmortem evidence that NF-L is decreased in opiate abusers, its role and underlying mechanisms remain largely unknown. We found that the microinjection of the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) into the ventrolateral orbital cortex (VLO) attenuated chronic morphine-induced behavioral sensitization. The microinjection of TSA blocked the chronic morphine-induced decrease of NF-L. However, our chromatin immunoprecipitation (ChIP)-qPCR results indicated that this effect was not due to the acetylation of histone H3-Lysine 9 and 14 binding to the NF-L promotor. In line with the behavioral phenotype, the microinjection of TSA also blocked the chronic morphine-induced increase of p-ERK/p-CREB/p-NF-L. Finally, we compared chronic and acute morphine-induced behavioral sensitization. We found that although both chronic and acute morphine-induced behavioral sensitization were accompanied by an increase of p-CREB/p-NF-L, TSA exhibited opposing effects on behavioral phenotype and molecular changes at different addiction contexts. Thus, our findings revealed a novel role of NF-L in morphine-induced behavioral sensitization, and therefore provided some correlational evidence of the involvement of NF-L in opiate addiction.
Assuntos
Filamentos Intermediários , Morfina , Ratos , Animais , Morfina/farmacologia , Fosforilação , Ratos Sprague-Dawley , Aprendizagem , Inibidores de Histona Desacetilases/farmacologiaRESUMO
Development of extramural health care for chronic wounds is still in its infancy in China, and thus it is urgent and vital to establish a correct concept and practicable principles. The authors reviewed recent domestic and international literature and summarized the following treatment procedures and principles for extramural health care of chronic wounds. (1) The patient needs to do self-assessment of the wound by using available simple methods; (2) The patient consults with professional physicians or nurses on wound care to define the severity and etiology of the non-healing wound; (3) Professionals evaluate the existing treatment strategies; (4) Etiological treatments are given by professionals; (5) Patients buy needed dressings via the more convenient ways from pharmacies, e-commerce platform or others; (6) Professionals provide a standardized and reasonable therapeutic plan based on the patient's wound conditions; (7) Both professionals and the patient pay attention to complications to prevent adverse outcomes; (8) Professionals strengthen the public education on wound care and integrated rehabilitation. This review expected to provide new perspectives on the therapeutic strategies for chronic wounds in an extramural setting.
Assuntos
Cicatrização , Ferimentos e Lesões , Humanos , Instalações de Saúde , Atenção à Saúde , China , Ferimentos e Lesões/terapiaRESUMO
Stepwise mini-incision microdissection testicular sperm extraction (mTESE) is a procedure that attempts to minimize testicular damage. However, the mini-incision approach may vary in patients with different etiologies. Here, we performed a retrospective analysis of 665 men with nonobstructive azoospermia (NOA) who underwent stepwise mini-incision mTESE (Group 1) and 365 men who underwent standard mTESE (Group 2). The results showed that the operation time (mean ± standard deviation) for patients with successful sperm retrieval in Group 1 (64.0 ± 26.6 min) was significantly shorter than that in Group 2 (80.2 ± 31.3 min), with P <0.001. The total sperm retrieval rate (SRR) was 23.1% in our study, and there was no significant difference between Group 1 and Group 2 ( P >0.05), even when the etiologies of NOA were taken into consideration. The results of consecutive multivariate logistic regression analysis (odds ratio [OR]: 0.57; 95% confidence interval [CI]: 0.38-0.87; P =0.009) and receiver operating characteristic (ROC) analysis (area under the ROC curve [AUC]=0.628) showed that preoperative anti-Müllerian hormone (AMH) level in idiopathic NOA patients was a potential predictor for surgical outcomes after initial three small incisions made in the equatorial region without sperm examined under an operating microscope (Steps 2-4). In conclusion, stepwise mini-incision mTESE is a useful technique for NOA patients, with comparable SRR, less surgical invasiveness, and shorter operation time compared with the standard approach. Low AMH levels may predict successful sperm retrieval in idiopathic patients even after a failed initial mini-incision procedure.
RESUMO
Hydrodynamics played an important role in the design and operation of bioreactors for wastewater treatment. In this work, an up-flow anaerobic hybrid bioreactor built-in with fixed bio-carriers was designed and optimized using computational fluid dynamics (CFD) simulation. The results indicated that the flow regime involving with vortex and dead zone was greatly affected by the positions of water inlet and bio-carrier modules. The ideal hydraulic features were obtained when the water inlet and bio-carrier modules located 9 cm and 60 cm above the bottom of reactor. Using the optimum hybrid system for nitrogen removal from wastewater with low carbon-to-nitrogen ratio (C/N = 3), the denitrification efficiency could reach 80.9 ± 0.4%. Illumina sequencing of 16S rRNA gene amplicons revealed that the microbial community divergence occurred among the biofilm on bio-carrier, the suspended sludge phase and the inoculum. Especially, the relative abundance of denitrifying genera Denitratisoma in the biofilm of bio-carrier reaches 5.73%, 6.2 times higher than that in the suspended sludge, implying the imbedded bio-carrier was conductive to enrich the specific denitrifiers to polish the denitrification performance with low carbon source. This work provided an effective method for the design optimization of bioreactor based on CFD simulation, and developed a hybrid reactor with fixed bio-carrier for nitrogen removal from wastewater with low C/N ratio.
Assuntos
Esgotos , Águas Residuárias , Desnitrificação , Hidrodinâmica , RNA Ribossômico 16S , Reatores Biológicos , Nitrogênio/análise , Biofilmes , Carbono , Eliminação de Resíduos LíquidosRESUMO
One-dimensional (1D) subwavelength atom arrays display multiply excited subradiant eigenstates which are reminiscent of free fermions. So far, these states have been associated with subradiant states with decay rates âN^{-3}, with N the number of atoms, which fundamentally prevents detection of their fermionic features by optical means. In this Letter, we show that free-fermion states generally appear whenever the band of singly excited states has a quadratic dispersion relation at the band edge and, hence, may also be obtained with radiant and even superradiant states. 1D arrays have free-fermion multiply excited eigenstates that are typically either subradiant or (super)radiant, and we show that a simple transformation acts between the two families. Based on this correspondence, we propose different means for their preparation and analyze their experimental signature in optical detection.
RESUMO
The anterior cingulate cortex (ACC) is located in the frontal part of the cingulate cortex, and plays important roles in pain perception and emotion. The thalamocortical pathway is the major sensory input to the ACC. Previous studies have show that several different thalamic nuclei receive projection fibers from spinothalamic tract, that in turn send efferents to the ACC by using neural tracers and optical imaging methods. Most of these studies were performed in monkeys, cats, and rats, few studies were reported systematically in adult mice. Adult mice, especially genetically modified mice, have provided molecular and synaptic mechanisms for cortical plasticity and modulation in the ACC. In the present study, we utilized rabies virus-based retrograde tracing system to map thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined with a new high-throughput VISoR imaging technique to generate a three-dimensional whole-brain reconstruction, especially the thalamus. We found that cortical neurons in the ACC received direct projections from different sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral, midline, and intralaminar thalamic nuclei. These findings provide key anatomic evidences for the connection between the thalamus and ACC.
Assuntos
Giro do Cíngulo , Tálamo , Animais , Giro do Cíngulo/metabolismo , Camundongos , Vias Neurais , Neurônios , Ratos , Núcleos Talâmicos/fisiologiaRESUMO
Social memory is the ability to discriminate familiar conspecific from the unknown ones. Prefrontal neurons are essentially required for social memory, but the mechanism associated with this regulation remains unknown. It is also unclear to what extent the neuronal representations of social memory formation and retrieval events overlap in the prefrontal cortex (PFC) and which event drives social memory strength. Here we asked these questions by using a repeated social training paradigm for social recognition in FosTRAP mice. We found that after 4 days' repeated social training, female mice developed stable social memory. Specifically, repeated social training activated more cells that were labeled with tdTomato during memory retrieval compared with the first day of memory encoding. Besides, combining TRAP with c-Fos immunostaining, we found about 30% of the FosTRAPed cells were reactivated during retrieval. Moreover, the number of retrieval-induced but not first-day encoding-induced tdTomato neurons correlates with the social recognition ratio in the prelimbic but not other subregions. The activated cells during the retrieval session also showed increased NMDA receptor-mediated synaptic transmission compared with that in non-labeled pyramidal neurons. Blocking NMDA receptors by MK-801 impaired social memory but not sociability. Therefore, our results reveal that repetitive training elevates mPFC involvement in social memory retrieval via enhancing NMDA receptor-mediated synaptic transmission, thus rendering stable social memory.
Assuntos
Memória/fisiologia , Rememoração Mental/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Reconhecimento Psicológico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento SocialRESUMO
Neuronal activity in the prefrontal cortex (PFC) controls dominance hierarchies in groups of animals. Dopamine (DA) strongly modulates PFC activity mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs). Still, it is unclear how these two subpopulations of DA receptor-expressing neurons in the PFC regulate social dominance hierarchy. Here, we demonstrate distinct roles for prefrontal D1R- and D2R-expressing neurons in establishing social hierarchy, with D1R+ neurons determining dominance and D2R+ neurons for subordinate. Ex vivo whole-cell recordings revealed that the dominant status of male mice correlates with rectifying AMPAR transmission and stronger excitatory synaptic strength onto D1R+ neurons in PFC pyramidal neurons. In contrast, the submissive status is associated with higher neuronal excitability in D2R+ neurons. Moreover, simultaneous manipulations of synaptic efficacy of D1R+ neurons in dominant male mice and neuronal excitability of D2R+ neurons of their male subordinates switch their dominant-subordinate relationship. These results reveal that prefrontal D1R+ and D2R+ neurons have distinct but synergistic functions in the dominance hierarchy, and DA-mediated regulation of synaptic strengths acts as a powerful behavioral determinant of intermale social rank.SIGNIFICANCE STATEMENT Dominance hierarchy exists widely among animals who confront social conflict. Studies have indicated that social status largely relies on the neuronal activity in the PFC, but how dopamine influences social hierarchy via subpopulation of prefrontal neurons is still elusive. Here, we explore the cell type-specific role of dopamine receptor-expressing prefrontal neurons in the dominance-subordinate relationship. We found that the synaptic strength of D1 receptor-expressing neurons determines the dominant status, whereas hyperactive D2-expressing neurons are associated with the subordinate status. These findings highlight how social conflicts recruit distinct cortical microcircuits to drive different behaviors and reveal how D1- and D2-receptor enriched neurocircuits in the PFC establish a social hierarchy.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Predomínio Social , Animais , Masculino , Camundongos , Técnicas de Patch-ClampRESUMO
A chiral photonic interface is a quantum system that has different probabilities for emitting photons to the left and right. An on-chip compatible chiral interface is attractive for both fundamental studies of light-matter interactions and applications to quantum information processing. We propose such a chiral interface based on superconducting circuits, which has wide bandwidth, rich tunability, and high tolerance to fabrication variations. The proposed interface consists of a core that uses Cooper-pair boxes (CPBs) to break time-reversal symmetry, and two superconducting transmons that connect the core to a waveguide in the manner reminiscent of a "giant atom." The transmons form a state decoupled from the core, akin to dark states of atomic physics, rendering the whole interface insensitive to the CPB charge noise. The proposed interface can be extended to realize a broadband fully passive on-chip circulator for microwave photons.
RESUMO
Lack of uricase leads to the high incidence of gout in humans and poultry, which is different from rodents. Therefore, chicken is considered to be one of the ideal animal models for the study of gout. Gout-related pain caused by the accumulation of urate in joints is one type of inflammatory pain, which causes damage to joint function. Our previous studies have demonstrated the crucial role of calcium-stimulated adenylyl cyclase subtype 1 (AC1) in inflammatory pain in rodents; however, there is no study in poultry. In the present study, we injected mono-sodium urate (MSU) into the left ankle joint of the chicken to establish a gouty arthritis model, and tested the effect of AC1 inhibitor NB001 on gouty arthritis in chickens. We found that MSU successfully induced spontaneous pain behaviors including sitting, standing on one leg, and limping after 1-3 h of injection into the left ankle of chickens. In addition, edema and mechanical pain hypersensitivity also occurred in the left ankle of chickens with gouty arthritis. After peroral administration of NB001 on chickens with gouty arthritis, both the spontaneous pain behaviors and the mechanical pain hypersensitivity were effectively relieved. The MSU-induced edema in the left ankle of chickens was not affected by NB001, suggesting a central effect of NB001. Our results provide a strong evidence that AC1 is involved in the regulation of inflammatory pain in poultry. A selective AC1 inhibitor NB001 produces an analgesic effect (not anti-inflammatory effect) on gouty pain and may be used for future treatment of gouty pain in both humans and poultry.