RESUMO
Optineurin (OPTN), a multifunctional adaptor protein in mammals, plays critical roles in many cellular processes, such as vesicular trafficking and autophagy. Notably, mutations in optineurin are directly associated with many human diseases, such as amyotrophic lateral sclerosis (ALS). OPTN can specifically recognize Rab8a and the GTPase-activating protein TBC1D17, and facilitate the inactivation of Rab8a mediated by TBC1D17, but with poorly understood mechanism. Here, using biochemical and structural approaches, we systematically characterize the interaction between OPTN and Rab8a, revealing that OPTN selectively recognizes the GTP-bound active Rab8a through its leucine-zipper domain (LZD). The determined crystal structure of OPTN LZD in complex with the active Rab8a not only elucidates the detailed binding mechanism of OPTN with Rab8a but also uncovers a unique binding mode of Rab8a with its effectors. Furthermore, we demonstrate that the central coiled-coil domain of OPTN and the active Rab8a can simultaneously interact with the TBC domain of TBC1D17 to form a ternary complex. Finally, based on the OPTN LZD/Rab8a complex structure and relevant biochemical analyses, we also evaluate several known ALS-associated mutations found in the LZD of OPTN. Collectively, our findings provide mechanistic insights into the interaction of OPTN with Rab8a, expanding our understanding of the binding modes of Rab8a with its effectors and the potential etiology of diseases caused by OPTN mutations.
RESUMO
Semiconductor-based photoelectrochemical (PEC) organic transformations usually show radical characteristics, in which the reaction selectivity is often difficult to precisely control due to the nonselectivity of radicals. Accordingly, several simple organic reactions (e.g., oxidations of alcohols, aldehydes, and other small molecules) have been widely studied, while more complicated processes like CâC coupling remain challenging. Herein, a synergistic heterogeneous/homogeneous PEC strategy is developed to achieve a controllable radical-induced CâC coupling reaction mediated by the copper-coordination effect at the semiconductor/electrolyte interfaces, which additionally exerts a significant impact on the product regioselectivity. Through experimental studies and theoretical simulations, this study reveals that the copper-chloride complex effectively regulates the formation of chloride radicals, a typical hydrogen atom transfer agent, on semiconductor surfaces and stabilizes the heterogeneous interfaces by suppressing the radical-induced surface passivation. Taking the Minisci reaction (the coupling between 2-phenylquinoline and cyclohexane) as a model, the yield of the target CâC coupling product reaches up to 90% on TiO2 photoanodes with a selectivity of 95% and long-term stability over 100 h. Moreover, such a strategy exhibits a broad scope and can be used for the functionalization of various heteroaromatic hydrocarbons.
RESUMO
Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
RESUMO
This study was aimed to investigate the impact of intracytoplasmic sperm injection (ICSI) on reproductive outcomes in couples with non-male factor infertility and frozen-thawed embryo transfer (FET) treatment. This retrospective cohort study involved a total of 10,143 cycles from 6206 couples who underwent FET at the Third Affiliated Hospital of Zhengzhou University between January 2016 and September 2022. Patients were categorized into two groups based on the insemination methods of transferred embryos. Clinical and neonatal outcomes were compared between ICSI and conventional in vitro fertilization (cIVF) groups. The results showed that ICSI was not associated with improved clinical outcomes compared to cIVF. However, ICSI was associated with lower birthweight when twins were born. In conclusion, although subgroup analysis showed that ICSI was associated with slightly improved live birth rate for infertile couples with non-male factor infertility compared to cIVF, the regression analysis showed that ICSI did not demonstrate any improvement of the reproductive outcomes. The infertile women with twin pregnancies should be further informed of the lower birthweight and lower birth length when their oocytes were inseminated with ICSI. The findings of this study provide valuable insights for clinicians when discussing the benefits and risks of ICSI in patients with non-male factor infertility.
Assuntos
Transferência Embrionária , Fertilização in vitro , Injeções de Esperma Intracitoplásmicas , Humanos , Injeções de Esperma Intracitoplásmicas/métodos , Feminino , Gravidez , Adulto , Transferência Embrionária/métodos , Fertilização in vitro/métodos , Estudos Retrospectivos , Masculino , Criopreservação/métodos , Resultado da Gravidez , Infertilidade Feminina/terapia , Taxa de GravidezRESUMO
Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.
Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Glicogênio , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/química , Sítios de Ligação , Cristalografia por Raios X , Glicogênio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Ligação ProteicaRESUMO
OBJECTIVE: To assess the association between dietary patterns and glycemic control among patients with type II diabetes mellitus (T2DM). DESIGN: A cross-sectional study. SITE: The 2015-2018 National Health and Nutrition Examination Survey (NHANES). PARTICIPANTS: A total of 1646 T2DM patients were included, of whom 854 were hyperglycemia. METHODS: Main dietary patterns were identified using the sparse principal components analysis (SPCA). Logistic regression analysis was applied to investigate the association between each dietary pattern and the risk of hyperglycemia with odds ratios (OR) and 95% confidence intervals (CI). SPCA analysis yielded five significant principal components (PC), which represented five main dietary patterns. RESULTS: PC1, characterized by a high intake of sweets, red meat and processed meat, was associated with higher odds of hyperglycemia in patients who underwent hyperglycemic drug or insulin treatments (OR: 1.71, 95% CI: 1.10-2.64). PC5, characterized by high in red meat, while low in coffee, sweets, and high-fat dairy consumption. The relationship between the PC5 and hyperglycemia was marginal significance (OR: 0.63, 95% CI: 0.38-1.02). PC2 was characterized by a high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat. In patients with the hyperglycemic drug and insulin free, higher PC2 levels were related to lower odds of hyperglycemia (OR: 0.45, 95% CI: 0.21-0.96). CONCLUSIONS: High intake of sweets, red meat, and processed meat might be detrimental to glycemic control in patients with drug-treated T2DM. High in red meat, while low in coffee, sweets, and high-fat dairy consumption may be beneficial to glycemic control. In addition, high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat may be good for glycemic control in patients without drug-treated T2DM.
RESUMO
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Fatores de Transcrição , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ligação Proteica , Proliferação de Células/efeitos dos fármacos , RNA Polimerase II/metabolismo , Células HEK293 , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidoresRESUMO
Purpose: The aim of this study was to evaluate the associations of thyroid autoimmunity (TAI) with the number of oocytes retrieved (NOR), fertilization rate (FR), and embryo quality (EQ) in euthyroid women with infertility and diminished ovarian reserve (DOR). Methods: This retrospective cohort study involved 1,172 euthyroid women aged 20-40 years with infertility and DOR who underwent an oocyte retrieval cycle. TAI was diagnosed in the presence of serum thyroperoxidase antibody (TPOAb) concentrations higher than 34 IU/ml and/or serum thyroglobulin antibody (TgAb) concentrations exceeding 115.0 IU/ml. Among these women, 147 patients with TAI were classified as the TAI-positive group, while 1,025 patients without TAI were classified as the TAI-negative group. Using generalized linear models (GLMs) adjusted for confounding factors, we evaluated the associations of TAI and the serum TPOAb and TgAb concentrations and NOR, FR, and EQ in this study's subjects. The TPOAb and TGAb values were subjected to log10 transformation to reduce skewness. Logistic regression models were used to estimate the effects of TPOAb and TgAb concentrations on the probabilities of achieving a high NOR (≥7) and high FR (>60%). Results: For the whole study population, women with TAI had a significantly lower NOR and poorer EQ than women without TAI (P < 0.001 for both). Interestingly, in the TSH ≤2.5 subgroup, the TAI-positive group also had a significantly lower NOR and poorer EQ than the TAI-negative group (P < 0.001 for both). Furthermore, negative associations were observed between log10(TPOAb) concentrations and NOR and the number of high-quality embryos and available embryos (P < 0.05 for all). The log10(TgAb) concentrations were inversely associated with NOR and the number of high-quality embryos (P < 0.05 for all). In the regression analysis, the log10(TPOAb) concentrations had lower probabilities of achieving a high NOR [adjusted odds ratio (aOR): 0.56; 95% confidence interval (95% CI) 0.37, 0.85; P = 0.007]. Conclusions: TAI and higher TPOAb and TgAb concentrations were shown to be associated with reductions in the NOR and EQ in the study population. Our findings provide further evidence to support systematic screening and treatment for TAI in euthyroid women with infertility and DOR.
Assuntos
Autoanticorpos , Autoimunidade , Desenvolvimento Embrionário , Infertilidade Feminina , Reserva Ovariana , Humanos , Feminino , Adulto , Infertilidade Feminina/imunologia , Infertilidade Feminina/sangue , Infertilidade Feminina/terapia , Reserva Ovariana/fisiologia , Estudos Retrospectivos , Autoimunidade/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Adulto Jovem , Gravidez , Glândula Tireoide/imunologia , Recuperação de Oócitos , Fertilização in vitro/métodos , Iodeto Peroxidase/imunologiaRESUMO
CoS2/CeO2, exhibiting the 3d-4f orbital coupling effect, is developed and shows exceptional OER activity, with an overpotential of 140 mV at 10 mA cm-2. DFT calculation and Raman spectra show the existence of a d-p-f electron transport ladder that can accelerate electron transfer through the Co-O(S)-Ce bond, optimize the adsorption free energy, and enhance the catalytic activity.
RESUMO
DNA aptamers have emerged as novel molecular tools in disease theranostics owing to their high binding affinity and specificity for protein targets, which rely on their ability to fold into distinctive three-dimensional (3D) structures. However, delicate atomic interactions that shape the 3D structures are often ignored when designing and modeling aptamers, leading to inefficient functional optimization. Challenges persist in determining high-resolution aptamer-protein complex structures. Moreover, the experimentally determined 3D structures of DNA molecules with exquisite functions remain scarce. These factors impede our comprehension and optimization of some important DNA aptamers. Here, we performed a streamlined solution NMR-based structural investigation on the 41-nt sgc8c, a prominent DNA aptamer used to target membrane protein tyrosine kinase 7, for cancer theranostics. We show that sgc8c prefolds into an intricate three-way junction (3WJ) structure stabilized by long-range tertiary interactions and extensive base-base stackings. Delineated by NMR chemical shift perturbations, site-directed mutagenesis, and 3D structural information, we identified essential nucleotides constituting the key functional elements of sgc8c that are centralized at the core of 3WJ. Leveraging the well-established structure-function relationship, we efficiently engineered two sgc8c variants by modifying the apical loop and introducing L-DNA base pairs to simultaneously enhance thermostability, biostability, and binding affinity for both protein and cell targets, a feat not previously attained despite extensive efforts. This work showcases a simplified NMR-based approach to comprehend and optimize sgc8c without acquiring the complex structure, and offers principles for the sophisticated structure-function organization of DNA molecules.
Assuntos
Aptâmeros de Nucleotídeos , Conformação de Ácido Nucleico , Receptores Proteína Tirosina Quinases , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/genética , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Modelos Moleculares , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Moléculas de Adesão CelularRESUMO
The optical memory effect in complex scattering media including turbid tissue and speckle layers has been a critical foundation for macroscopic and microscopic imaging methods. However, image reconstruction from strong scattering media without the optical memory effect has not been achieved. Here, we demonstrate image reconstruction through scattering layers where no optical memory effect exists, by developing a multistage convolutional optical neural network (ONN) integrated with multiple parallel kernels operating at the speed of light. Training this Fourier optics-based, parallel, one-step convolutional ONN with the strong scattering process for direct feature extraction, we achieve memory-less image reconstruction with a field of view enlarged by a factor up to 271. This device is dynamically reconfigurable for ultrafast multitask image reconstruction with a computational power of 1.57 peta-operations per second (POPS). Our achievement establishes an ultrafast and high energy-efficient optical machine learning platform for graphic processing.
RESUMO
Chlorophyll a (Chla) concentration can be used as an indicator of algal biomass, and the accumulation of algal biomass in water column is essential for the emergence of surface blooms. By using Moderate Resolution Imaging Spectrometer (MODIS) data, a machine learning algorithm was previously developed to assess algal biomass within the euphotic depth (Beu). Here, a long-term Beu dataset of Lake Taihu from 2003 to 2020 was generated to examine its spatio-temporal dynamics, sensitivity to environmental factors, and variations in comparison to the surface algal bloom area. During this period, the daily Beu (total Beu within the whole lake) exhibited temporal fluctuations between 40 and 90 t Chla, with an annual average of 63.32 ± 5.23 t Chla. Notably, it reached its highest levels in 2007 (72.34 t Chla) and 2017 (73.57 t Chla). Moreover, it demonstrated a clear increasing trend of 0.197 t Chla/y from 2003 to 2007, followed by a slight decrease of 0.247 t Chla/y after 2017. Seasonal variation showed a bimodal annual cycle, characterized by a minor peak in March â¼ April and a major peak in July â¼ September. Spatially, the average pixel-based Beu (total Beu of a unit water column) ranged from 21.17 to 49.85 mg Chla, with high values predominantly distributed in the northwest region and low values in the central region. The sensitivity of Beu to environmental factors varies depending on regions and time scales. Temperature has a significant impact on monthly variation (65.73%), while the level of nutrient concentrations influences annual variation (55.06%). Wind speed, temperature, and hydrodynamic conditions collectively influence the spatial distribution of Beu throughout the entire lake. Algal bloom biomass can capture trend changes in two mutant years as well as bimodal phenological changes compared to surface algal bloom area. This study can provide a basis for scientific evaluation of water environment and a reference for monitoring algal biomass in other similar eutrophic lakes.
Assuntos
Biomassa , Eutrofização , Lagos , Fitoplâncton , Monitoramento Ambiental/métodos , Clorofila A/análise , Imagens de Satélites , Estações do AnoRESUMO
A novel regression model, monotonic inner relation-based non-linear partial least squares (MIR-PLS), is proposed to address complex issues like limited observations, multicollinearity, and nonlinearity in Chinese Medicine (CM) dose-effect relationship experimental data. MIR-PLS uses a piecewise mapping function based on monotonic cubic splines to model the non-linear inner relations between input and output score vectors. Additionally, a new weight updating strategy (WUS) is developed by leveraging the properties of monotonic functions. The proposed MIR-PLS method was compared with five well-known PLS variants: standard PLS, quadratic PLS (QPLS), error-based QPLS (EB-QPLS), neural network PLS (NNPLS), and spline PLS (SPL-PLS), using CM dose-effect relationship datasets and near-infrared (NIR) spectroscopy datasets. Experimental results demonstrate that MIR-PLS exhibits general applicability, achieving excellent predictive performances in the presence or absence of significant non-linear relationships. Furthermore, the model is not limited to CM dose-effect relationship research and can be applied to other regression tasks.
RESUMO
The redox mediated photoelectrochemical (PEC) or electrochemical (EC) alkene oxidation process is a promising method to produce high value-added epoxides. However, due to the competitive reaction of water oxidation and overoxidation of the mediator, the utilization of the electricity is far below the ideal value, where the loss of epoxidation's faradaic efficiency (FE) is ≈50%. In this study, a Br-/HOBr-mediated method is developed to achieve a near-quantitative selectivity and ≈100% FE of styrene oxide on α-Fe2O3, in which low concentration of Br- as mediator and locally generated acidic micro-environment work together to produce the higher active HOBr species. A variety of styrene derivatives are investigated with satisfied epoxidation performance. Based on the analysis of local pH-dependent epoxidation FE and products distribution, the study further verified that HOBr serves as the true active mediator to generate the bromohydrin intermediate. It is believed that this strategy can greatly overcome the limitation of epoxidation FE to enable future industrial applications.
RESUMO
The water oxidation half-reaction at anodes is always considered the rate-limiting step of overall water splitting (OWS), but the actual bias distribution between photoanodes and cathodes of photoelectrochemical (PEC) OWS cells has not been investigated systematically. In this work, we find that, for PEC cells consisting of photoanodes (nickel-modified n-Si [Ni/n-Si] and α-Fe2O3) with low photovoltage (Vph < 1 V), a large portion of applied bias is exerted on the Pt cathode for satisfying the hydrogen evolution thermodynamics, showing a thermodynamics-controlled characteristic. In contrast, for photoanodes (TiO2 and BiVO4) with Vph > 1 V, the bias required for cathode activation can be significantly reduced, exhibiting a kinetics-controlled characteristic. Further investigations show that the bias distribution can be regulated by tuning the electrolyte pH and using alternative half-reaction couplings. Accordingly, a volcano plot is presented for the rational design of the overall reactions and unbiased PEC cells. Motivated by this, an unbiased PEC cell consisting of a simple Ni/n-Si photoanode and Pt cathode is assembled, delivering a photocurrent density of 5.3 ± 0.2 mA cm-2.
RESUMO
Alcohol abuse can lead to alcoholic liver disease, becoming a major global burden. Hovenia dulcis fruit peduncle polysaccharides (HDPs) have the potential to alleviate alcoholic liver injury and play essential roles in treating alcohol-exposed liver disease; however, the hepatoprotective effects and mechanisms remain elusive. In this study, we investigated the hepatoprotective effects of HDPs and their potential mechanisms in alcohol-exposed mice through liver metabolomics and gut microbiome. The results found that HDPs reduced medium-dose alcohol-caused dyslipidemia (significantly elevated T-CHO, TG, LDL-C), elevated liver glycogen levels, and inhibited intestinal-hepatic inflammation (significantly decreased IL-4, IFN-γ and TNF-α), consequently reversing hepatic pathological changes. When applying gut microbiome analysis, HDPs showed significant decreases in Proteobacteria, significant increases in Firmicutes at the phylum level, increased Lactobacillus abundance, and decreased Enterobacteria abundance, maintaining the composition of gut microbiota. Further hepatic metabolomics analysis revealed that HDPs had a regulatory effect on hepatic fatty acid metabolism, by increasing the major metabolic pathways including arachidonic acid and glycerophospholipid metabolism, and identified two important metabolites-C00157 (phosphatidylcholine, a glycerophospholipid plays a central role in energy production) and C04230 (1-Acyl-sn-glycero-3-phosphocholine, a lysophospholipid involved in the breakdown of phospholipids)-involved in the above metabolism. Overall, HDPs reduced intestinal dysbiosis and hepatic fatty acid metabolism disorders in alcohol-exposed mice, suggesting that HDPs have a beneficial effect on alleviating alcohol-induced hepatic metabolic disorders.
RESUMO
PURPOSE: Controlled ovarian hyperstimulation (COH) has been reported to affect thyroid function; however, the impact of thyroid-stimulating hormone (TSH) levels during COH on embryo development and early reproductive outcomes has largely not been determined. Therefore, the aim of the present study was to investigate whether TSH levels are associated with COH and impact early reproductive outcomes in preconceptionally euthyroid women. METHODS: This was a prospective cohort study. A total of 338 euthyroid women who underwent their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment using the gonadotropin releasing hormone agonist (GnRH-a) protocol were included. Samples were collected at different representative time points for TSH and estradiol measurements. RESULTS: TSH levels significantly increased with the administration of Gn and maintained this tendency until the trigger day. Basal TSH levels increased along with basal estradiol levels and remained stable when estradiol levels were higher than 150 pmol/L. On the trigger day, TSH levels changed with increasing estradiol levels in the high-normal basal TSH group but not in the low TSH group. TSH did not impact clinical pregnancy or early pregnancy loss after adjusting for age, stage or number of embryos. CONCLUSION(S): Serum TSH levels change significantly during COH and are associated with significant changes in estradiol levels. However, euthyroid women with high-normal TSH levels showed similar development potential for inseminated embryos and early reproductive outcomes compared to those with low TSH levels.
Assuntos
Estradiol , Fertilização in vitro , Indução da Ovulação , Injeções de Esperma Intracitoplásmicas , Tireotropina , Humanos , Feminino , Estradiol/sangue , Adulto , Gravidez , Tireotropina/sangue , Estudos Prospectivos , Fertilização in vitro/métodos , Indução da Ovulação/métodos , Taxa de Gravidez , Resultado da GravidezRESUMO
TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.
Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , MamíferosRESUMO
PURPOSE: This study aimed to determine the influence of serum vitamin D levels on assisted reproductive and perinatal outcomes in young non-polycystic ovary syndrome (PCOS) patients. METHODS: A total of 3397 non-PCOS women under 35 years who underwent their first IVF/ICSI cycle at the Reproductive Medicine Center of the Third Affiliated Hospital of Zhengzhou University, from 2018 to 2019, were included. The women were categorized into two groups based on their serum 25(OH)D concentrations: deficient group [25(OH)D < 50 nmol/L] and non-deficient group [25(OH)D ≥ 50 nmol/L]. Ovulation induction results, clinical pregnancy rate, cumulative live birth rate (CLBR), and perinatal outcomes of both groups were compared. RESULTS: A total of 1113 non-PCOS women had successful pregnancies in their first completed IVF cycle. Comparison of laboratory results between the two groups revealed a significantly higher number of oocytes retrieved in the vitamin D-non-deficient group (15.2 ± 6.8 vs. 14.5 ± 6.7, p = 0.015). After controlling for confounding factors, there was no significant difference in the CLBR between the vitamin D-deficient group and the non-deficient group (71.0%, 1,973/2,778 vs. 69.0%, 427/619, p = 0.314, unadjusted). The prevalence of gestational diabetes mellitus (GDM) was higher in the vitamin D-deficient group than in the vitamin D-non-deficient group in both fresh-cycle singleton live births (3.8% vs. 1.2%) and twin live births (2.3% vs. 1.5%). CONCLUSION: This study demonstrated that vitamin D-deficient group had a lower number of oocytes retrieved than the non-deficient group and a higher prevalence of GDM, suggesting that vitamin D deficiency impacts assisted pregnancies and perinatal outcomes in infertile non-PCOS women. However, further studies are required to confirm these findings.
Assuntos
Fertilização in vitro , Indução da Ovulação , Gravidez , Humanos , Feminino , Estudos Retrospectivos , Fertilização in vitro/métodos , Taxa de Gravidez , Indução da Ovulação/métodos , Vitamina DRESUMO
BACKGROUND: T cells are key players in the tumor immune microenvironment (TIME), as they can recognize and eliminate cancer cells that express neoantigens derived from somatic mutations. However, the diversity and specificity of T-cell receptors (TCRs) that recognize neoantigens are largely unknown, due to the high variability of TCR sequences among individuals. METHODS: To address this challenge, we applied GLIPH2, a novel algorithm that groups TCRs based on their predicted antigen specificity and HLA restriction, to cluster the TCR repertoire of 1,702 patients with digestive tract cancer. The patients were divided into five groups based on whether they carried tumor-infiltrating or clonal-expanded TCRs and calculated their TCR diversity. The prognosis, tumor subtype, gene mutation, gene expression, and immune microenvironment of these groups were compared. Viral specificity inference and immunotherapy relevance analysis performed for the TCR groups. RESULTS: This approach reduced the complexity of TCR sequences to 249 clonally expanded and 150 tumor-infiltrating TCR groups, which revealed distinct patterns of TRBV usage, HLA association, and TCR diversity. In gastric adenocarcinoma (STAD), patients with tumor-infiltrating TCRs (Patients-TI) had significantly worse prognosis than other patients (Patients-nonTI). Patients-TI had richer CD8+ T cells in the immune microenvironment, and their gene expression features were positively correlated with immunotherapy response. We also found that tumor-infiltrating TCR groups were associated with four distinct tumor subtypes, 26 common gene mutations, and 39 gene expression signatures. We discovered that tumor-infiltrating TCRs had cross-reactivity with viral antigens, indicating a possible link between viral infections and tumor immunity. CONCLUSION: By applying GLIPH2 to TCR sequences from digestive tract tumors, we uncovered novel insights into the tumor immune landscape and identified potential candidates for shared TCRs and neoantigens.