Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Yi Chuan ; 46(7): 560-569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016089

RESUMO

Genomic prediction has emerged as a pivotal technology for the genetic evaluation of livestock, crops, and for predicting human disease risks. However, classical genomic prediction methods face challenges in incorporating biological prior information such as the genetic regulation mechanisms of traits. This study introduces a novel approach that integrates mRNA transcript information to predict complex trait phenotypes. To evaluate the accuracy of the new method, we utilized a Drosophila population that is widely employed in quantitative genetics researches globally. Results indicate that integrating mRNA transcript data can significantly enhance the genomic prediction accuracy for certain traits, though it does not improve phenotype prediction accuracy for all traits. Compared with GBLUP, the prediction accuracy for olfactory response to dCarvone in male Drosophila increased from 0.256 to 0.274. Similarly, the accuracy for cafe in male Drosophila rose from 0.355 to 0.401. The prediction accuracy for survival_paraquat in male Drosophila is improved from 0.101 to 0.138. In female Drosophila, the accuracy of olfactory response to 1hexanol increased from 0.147 to 0.210. In conclusion, integrating mRNA transcripts can substantially improve genomic prediction accuracy of certain traits by up to 43%, with range of 7% to 43%. Furthermore, for some traits, considering interaction effects along with mRNA transcript integration can lead to even higher prediction accuracy.


Assuntos
Drosophila , Genômica , RNA Mensageiro , Animais , RNA Mensageiro/genética , Masculino , Genômica/métodos , Feminino , Drosophila/genética , Fenótipo
2.
Food Chem ; 457: 139807, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964207

RESUMO

This study was conducted to comprehensively characterize, metabolites, lipids, and volatile flavor compounds of NingXiang (NX) pigs, Berkshire (BKS) pigs, and their crossbred (Berkshire × Ningxiang, BN) pigs using multi-omics technique. The results showed that NX had high intramuscular fat (IMF) content and meat redness. The metabolite and lipid compositions were varied greatly among three pig breeds. The NX pigs exhibited distinctive sweet, fruity, and floral aroma while BN pigs have inherited this flavor profile. 2-pentylfuran, pentanal, 2-(E)-octenal, and acetic acid were the key volatile flavor compounds (VOC) of NX and BKS pork. The VOCs were influenced by the composition and content of metabolites and lipids. The NX pigs have excellent meat quality traits, unique flavor profiles, and high degree of genetic stability regarding flavor. The study deepens our understanding of the flavor of Chinese indigenous pigs, providing theoretical basis to understand the meat flavor regulation under different feeding conditions.


Assuntos
Lipídeos , Carne , Paladar , Compostos Orgânicos Voláteis , Animais , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Suínos/metabolismo , Lipídeos/química , Lipídeos/análise , Carne/análise , Aromatizantes/química , Aromatizantes/metabolismo , Odorantes/análise , Metabolômica , Multiômica
3.
Cell Mol Gastroenterol Hepatol ; 18(4): 101376, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969206

RESUMO

BACKGROUND & AIMS: Restricted gastric motor functions contribute to aging-associated undernutrition, sarcopenia, and frailty. We previously identified a decline in interstitial cells of Cajal (ICC; gastrointestinal pacemaker and neuromodulator cells) and their stem cells (ICC-SC) as a key factor of gastric aging. Altered functionality of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is central to organismal aging. Here, we investigated the role of EZH2 in the aging-related loss of ICC/ICC-SC. METHODS: klotho mice, a model of accelerated aging, were treated with the most clinically advanced EZH2 inhibitor, EPZ6438 (tazemetostat; 160 mg/kg intraperitoneally twice a day for 3 weeks). Gastric ICC were analyzed by Western blotting and immunohistochemistry. ICC and ICC-SC were quantified by flow cytometry. Gastric slow wave activity was assessed by intracellular electrophysiology. Ezh2 was deactivated in ICC by treating KitcreERT2/+;Ezh2fl/fl mice with tamoxifen. TRP53, a key mediator of aging-related ICC loss, was induced with nutlin 3a in gastric muscle organotypic cultures and an ICC-SC line. RESULTS: In klotho mice, EPZ6438 treatment mitigated the decline in the ICC growth factor KIT ligand/stem cell factor and gastric ICC. EPZ6438 also improved gastric slow wave activity and mitigated the reduced food intake and impaired body weight gain characteristic of this strain. Conditional genomic deletion of Ezh2 in Kit-expressing cells also prevented ICC loss. In organotypic cultures and ICC-SC, EZH2 inhibition prevented the aging-like effects of TRP53 stabilization on ICC/ICC-SC. CONCLUSIONS: Inhibition of EZH2 with EPZ6438 mitigates aging-related ICC/ICC-SC loss and gastric motor dysfunction, improving slow wave activity and food intake in klotho mice.

4.
Animals (Basel) ; 14(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672349

RESUMO

Recent research has identified ADAR1 as a participant in the regulation of lipid accumulation in mice. However, there are no reports on the roles of ADAR1 in proliferation, apoptosis and differentiation of porcine preadipocytes. In this study, we investigated the role of ADAR1 in differentiation, proliferation and apoptosis of porcine preadipocytes using CCK-8, EdU staining, cell cycle detection, RT-qPCR, Western blot, a triglyceride assay and Oil Red O staining. The over-expression of ADAR1 significantly promoted proliferation but inhibited the differentiation and apoptosis of porcine preadipocytes. The inhibition of ADAR1 had the opposite effect on the proliferation, differentiation and apoptosis of porcine preadipocytes with over-expressed ADAR1. Then, the regulation mechanisms of ADAR1 on preadipocyte proliferation were identified using RNA-seq, and 197 DEGs in response to ADAR1 knockdown were identified. The MAPK signaling pathway is significantly enriched, indicating its importance in mediating fat accumulation regulated by ADAR1. The study's findings will aid in uncovering the mechanisms that regulate fat accumulation through ADAR1.

5.
Vet Sci ; 11(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668450

RESUMO

This study aimed to identify active miRNA editing sites during adipose development in Ningxiang pigs and analyze their characteristics and functions. Based on small RNA-seq data from the subcutaneous adipose tissues of Ningxiang pigs at four stages-30 days (piglet), 90 days (nursery), 150 days (early fattening), and 210 days (late fattening)-we constructed a developmental map of miRNA editing in the adipose tissues of Ningxiang pigs. A total of 505 miRNA editing sites were identified using the revised pipeline, with C-to-U editing types being the most prevalent, followed by U-to-C, A-to-G, and G-to-U. Importantly, these four types of miRNA editing exhibited base preferences. The number of editing sites showed obvious differences among age groups, with the highest occurrence of miRNA editing events observed at 90 days of age and the lowest at 150 days of age. A total of nine miRNA editing sites were identified in the miRNA seed region, with significant differences in editing levels (p < 0.05) located in ssc-miR-23a, ssc-miR-27a, ssc-miR-30b-5p, ssc-miR-15a, ssc-miR-497, ssc-miR-15b, and ssc-miR-425-5p, respectively. Target gene prediction and KEGG enrichment analyses indicated that the editing of miR-497 might potentially regulate fat deposition by inhibiting adipose synthesis via influencing target binding. These results provide new insights into the regulatory mechanism of pig fat deposition.

6.
J Smooth Muscle Res ; 60: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38462479

RESUMO

Macrophages are the originators of inflammatory compounds, phagocytic purifiers in their local environment, and wound healing protectors in oxidative environments. They are molded by the tissue milieu they inhabit, with gastrointestinal (GI) muscularis macrophages (MMs) being a prime example. MMs are located in the muscular layer of the GI tract and contribute to muscle repair and maintenance of GI motility. MMs are often in close proximity to the enteric nervous system, specifically near the enteric neurons and interstitial cells of Cajal (ICCs). Consequently, the anti-inflammatory function of MMs corresponds to the development and maintenance of neural networks in the GI tract. The capacity of MMs to shift from anti-inflammatory to proinflammatory states may contribute to the inflammatory aspects of various GI diseases and disorders such as diabetic gastroparesis or postoperative ileus, functional disorders such as irritable bowel syndrome, and organic diseases such as inflammatory bowel disease. We reviewed the current knowledge of MMs and their influence on neighboring cells due to their important role in the GI tract.


Assuntos
Sistema Nervoso Entérico , Anti-Inflamatórios , Motilidade Gastrointestinal , Trato Gastrointestinal , Macrófagos , Músculos , Humanos
7.
Genes (Basel) ; 15(2)2024 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397195

RESUMO

To investigate the differential immunology in Ningxiang and Berkshire pigs and their F1 offspring (F1 offspring), physiological and biochemical indicators in the plasma and spleen were analyzed. Then, transcriptomic analysis of the spleen identified 1348, 408, and 207 differentially expressed genes (DEGs) in comparisons of Ningxiang vs. Berkshire, Berkshire vs. F1 offspring, and Ningxiang vs. F1 offspring, respectively. In Ningxiang vs. Berkshire pigs, the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs included CD163, MARCO, CXCL14, CCL19, and PPBP, which are associated with immunity. GO and KEGG analyses were also conducted comparing F1 offspring and their parents. The DEGs, including BPIFB1, HAVCR2, CD163, DDX3X, CCR5, and ITGB3, were enriched in immune-related pathways. Protein-protein interaction (PPI) analysis indicated that the EGFR and ITGA2 genes were key hub genes. In conclusion, this study identifies significant immune DEGs in different pig breeds, providing data to support the exploration of breeding strategies for disease resistance in local and crossbred pig populations.


Assuntos
Baço , Transcriptoma , Suínos/genética , Animais , Transcriptoma/genética , Perfilação da Expressão Gênica , Genoma
8.
Animals (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958077

RESUMO

Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, and 380 DEGs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. The lipidomic analysis screened 423, 252, and 50 SCLs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. Lycine, serine, and the threonine metabolism pathway, fatty acid biosynthesis and metabolism-related pathways were significantly enriched in comparisons of Berkshires vs. Ningxiang pigs and Berkshires vs. F1 offspring. The DEGs (PHGDH, LOC110256000) and the SCLs (phosphatidylserines) may have a great impact on the glycine, serine, and the threonine metabolism pathway. Moreover, the DEGs (FASN, ACACA, CBR4, SCD, ELOV6, HACD2, CYP3A46, CYP2B22, GPX1, and GPX3) and the SCLs (palmitoleic acid, linoleic acid, arachidonic acid, and icosadienoic acid) play important roles in the fatty acid biosynthesis and metabolism of fatty acids. Thus, the difference in fat deposition among Ningxiang pig, Berkshires, and F1 offspring may be caused by differences in the expression patterns of key genes in multiple enriched KEGG pathways. This research revealed multiple lipids that are potentially available biological indicators and screened key genes that are potential targets for molecular design breeding. The research also explored the molecular mechanisms of the difference in fat deposition among Ningxiang pig, Berkshires, and F1 pigs, and provided an insight into selection for backfat thickness and the fat composition of adipose tissue for future breeding strategies.

9.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37833998

RESUMO

Ningxiang pigs are a renowned indigenous pig breed in China, known for their meat quality, disease resistance, and environmental adaptability. In recent decades, consumer demand for meats from indigenous breeds has grown significantly, fueling the selection and crossbreeding of Ningxiang pigs (NXP). The latter has raised concerns about the conservation and sustainable use of Ningxiang pigs as an important genetic resource. To address these concerns, we conducted a comprehensive genomic study using 2242 geographically identified Ningxiang pigs. The estimated genomic breed composition (GBC) suggested 2077 pigs as purebred Ningxiang pigs based on a ≥94% NXP-GBC cut-off. The remaining 165 pigs were claimed to be crosses, including those between Duroc and Ningxiang pigs and between Ningxiang and Shaziling pigs, and non-Ningxiang pigs. Runs of homozygosity (ROH) were identified in the 2077 purebred Ningxiang pigs. The number and length of ROH varied between individuals, with an average of 32.14 ROH per animal and an average total length of 202.4 Mb per animal. Short ROH (1-5 Mb) was the most abundant, representing 66.5% of all ROH and 32.6% of total ROH coverage. The genomic inbreeding estimate was low (0.089) in purebred Ningxiang pigs compared to imported western pig breeds. Nine ROH islands were identified, pinpointing candidate genes and QTLs associated with economic traits of interest, such as reproduction, carcass and growth traits, lipid metabolism, and fat deposition. Further investigation of these ROH islands and candidate genes is anticipated to better understand the genomics of Ningxiang pigs.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Humanos , Suínos/genética , Animais , Homozigoto , Cruzamento , Endogamia , Genômica , Genótipo
10.
Gastroenterology ; 165(6): 1458-1474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597632

RESUMO

BACKGROUND & AIMS: Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS: Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS: HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS: Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.


Assuntos
Diabetes Mellitus Experimental , Gastroparesia , Animais , Feminino , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Epigênese Genética , Gastroparesia/genética , Neurônios , Óxido Nítrico Sintase Tipo I
11.
Am J Med Genet A ; 191(9): 2428-2432, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462082

RESUMO

Mitogen-activated protein kinase 8-interacting protein 3 gene (MAPK8IP3) encodes the c-Jun-amino-terminal kinase-interacting protein 3 (JIP3) and is involved in retrograde axonal transport. Heterozygous de novo pathogenic variants in MAPK8IP3 result in a neurodevelopmental disorder with or without brain abnormalities and possible axonal peripheral neuropathy. Whole-exome sequencing was performed on an individual presenting with severe congenital muscle hypotonia of neuronal origin mimicking lethal spinal muscular atrophy. Compound heterozygous rare variants (a splice and a missense) were detected in MAPK8IP3, inherited from the healthy parents. Western blot analysis in a muscle biopsy sample showed a more than 60% decrease in JIP3 expression. Here, we suggest a novel autosomal recessive phenotype of a lower motor neuron disease caused by JIP3 deficiency.


Assuntos
Atrofia Muscular Espinal , Doenças Musculares , Anormalidades Musculoesqueléticas , Humanos , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Fenótipo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
12.
Genes (Basel) ; 14(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37372447

RESUMO

The processes of muscle growth and development, including myoblast proliferation, migration, differentiation, and fusion, are modified by a variety of regulatory factors. MYL4 plays an important role in atrial development, atrial cardiomyopathy, muscle-fiber size, and muscle development. The structural variation (SV) of MYL4 was found via the de novo sequencing of Ningxiang pigs, and the existence of SV was verified in the experiments. The genotype distribution of Ningxiang pigs and Large White pigs was detected, and it was found that Ningxiang pigs were mainly of the BB genotype and that Large White pigs were mainly of the AB genotype. However, the molecular mechanisms behind the MYL4-mediated regulation of skeletal muscle development need to be deeply explored. Therefore, RT-qPCR, 3'RACE, CCK8, EdU, Western blot, immunofluorescence, flow cytometry, and bioinformation analysis were used to explore the function of MYL4 in myoblast development. The cDNA of MYL4 was successfully cloned from Ningxiang pigs, and its physicochemical properties were predicted. The expression profiles in six tissues and four stages of Ningxiang pigs and Large White pigs were found to be the highest in the lungs and 30 days after birth. The expression of MYL4 increased gradually with the extension of the myogenic differentiation time. The myoblast function test showed that the overexpression of MYL4 inhibited proliferation and promoted apoptosis and differentiation. The knockdown of MYL4 showed the opposite result. These results enhance our understanding of the molecular mechanisms of muscle development and provide a solid theoretical foundation for further exploring the role of the MYL4 gene in muscle development.


Assuntos
Fibrilação Atrial , Animais , Suínos/genética , Mioblastos/metabolismo , Desenvolvimento Muscular/genética
13.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240251

RESUMO

MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.


Assuntos
MicroRNAs , Transdução de Sinais , Animais , Suínos , Linhagem Celular , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Proliferação de Células/genética
14.
Foods ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900576

RESUMO

With the aim to study the flavor characteristics of Ningxiang pigs (NX), Duroc (DC) pigs, and their crosses (Duroc × Ningxiang, DN), electronic nose and gas chromatography-mass spectrometry analysis were used to detect the volatile flavor substances in NX, DC, and DN (n = 34 pigs per population). A total of 120 volatile substances were detected in the three populations, of which 18 substances were common. Aldehydes were the main volatile substances in the three populations. Further analysis revealed that tetradecanal, 2-undecenal, and nonanal were the main aldehyde substances in the three kinds of pork, and the relative content of benzaldehyde in the three populations had significant differences. The flavor substances of DN were similar to that of NX and showed certain heterosis in flavor substances. These results provide a theoretical basis for the study of flavor substances of China local pig breeds and new ideas for pig breeding.

15.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833449

RESUMO

With the increasing popularity of genomic sequencing, breeders pay more attention to identifying the crucial molecular markers and quantitative trait loci for improving the body size and reproduction traits that could affect the production efficiency of pig-breeding enterprises. Nevertheless, for the Shaziling pig, a well-known indigenous breed in China, the relationship between phenotypes and their corresponding genetic architecture remains largely unknown. Herein, in the Shaziling population, a total of 190 samples were genotyped using the Geneseek Porcine 50K SNP Chip, obtaining 41857 SNPs for further analysis. For phenotypes, two body measurement traits and four reproduction traits in the first parity from the 190 Shaziling sows were measured and recorded, respectively. Subsequently, a genome-wide association study (GWAS) between the SNPs and the six phenotypes was performed. The correlation between body size and reproduction phenotypes was not statistically significant. A total of 31 SNPs were found to be associated with body length (BL), chest circumference (CC), number of healthy births (NHB), and number of stillborns (NSB). Gene annotation for those candidate SNPs identified 18 functional genes, such as GLP1R, NFYA, NANOG, COX7A2, BMPR1B, FOXP1, SLC29A1, CNTNAP4, and KIT, which exert important roles in skeletal morphogenesis, chondrogenesis, obesity, and embryonic and fetal development. These findings are helpful to better understand the genetic mechanism for body size and reproduction phenotypes, while the phenotype-associated SNPs could be used as the molecular markers for the pig breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Gravidez , Suínos , Animais , Feminino , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Genótipo , Reprodução
16.
Foods ; 12(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36673389

RESUMO

This study attempts to explore the suitable conditions for the detection of volatile flavor compounds (VFCs) in Ningxiang pork by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Ningxiang pigs were harvested from a slaughterhouse and a longissimus dorsi sample was collected from each animal. The VFCs of Ningxiang pork can be strongly impacted by the detection conditions (columns, weight of meat samples, heat treatment time, equilibrium conditions, and extraction conditions) that need to be optimized. Our results also provided the optimal test conditions: weighing 5 g of meat samples, grinding for 30 s in a homogenizer, heat treatment at 100 °C for 30 min, equilibration at 70 °C for 30 min, and extraction at 100 °C for 50 min. Furthermore, the feasibility and representativeness of the test method were confirmed based on principal component analysis and a comparison of the three pork VFCs. These findings offer researchers a unified and efficient pretreatment strategy to research pork VFCs.

17.
Yi Chuan ; 45(12): 1147-1157, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764277

RESUMO

To compare and analyze the molecular mechanisms of adipose deposition in subcutaneous fat (SAF)and intramuscular fat (IMF) tissues in Ningxiang pigs, differential gene expression profiles in SAF and IMF tissues of Ningxiang pigs were identified and analysed using RNA-seq technology. Six healthy 250-day-old male Ningxiang pigs with similar body weights (approximately 85 kg) of intraspecific individuals were selected as experimental material and samples of SAF and IMF tissues were collected. Differential genes associated with fat deposition and lipid metabolism were obtained by sequencing two adipose tissue transcriptomes and performing GO (Gene Ontology) functional annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis. To verify the reliability of the sequencing results, six differential genes were randomly selected to validate using qRT-PCR. The results showed that we identified 2406 DEGs, with 1422 up-regulated and 984 down-regulated genes in two tissues. GO functional annotation analysis revealed that the differentially expressed genes were mainly involved in lipid metabolism related pathways, such as steroid biosynthesis, unsaturated fatty acid biosynthesis, glycerophospholipid metabolism and autophagy pathway. KEGG pathway enrichment showed that the differentially expressed genes were mainly enriched in the biological processes related to lipid binding, fatty acid metabolism, glycol ester metabolism, lipid biosynthesis and other biological processes related to lipid metabolism. Genes related to lipid metabolism, such as TCAP, NR4A1, ACACA, LPL, ELOVL6, DGAT1, PRKAA1, ATG101, TP53INP2, FDFT1, ACOX1 and SCD were identified by bioinformatic analyses and verified by qRT-PCR. Our results indicated that these genes may play important roles in the regulation of fat deposition and metabolism in the SAF and IMF tissue, providing the further mechanistic investigation of fat deposition in Ningxiang pigs.


Assuntos
Tecido Adiposo , Metabolismo dos Lipídeos , Gordura Subcutânea , Transcriptoma , Animais , Suínos/genética , Gordura Subcutânea/metabolismo , Masculino , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética
18.
Vet Sci ; 9(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36423090

RESUMO

MicroRNAs (miRNAs) are key regulators involved in the myogenic process in skeletal muscles. miR-708-5p plays an important role in various biochemical and physiological processes, but its function in skeletal myogenesis remain unclear. In this study, we first explored the effects of miR-708-5p on C2C12 proliferation and differentiation by overexpression and interference experiments. Then, we predicted the target genes of miR-708-5p and analyzed their function. We found that miR-708-5p was gradually increased during myoblast differentiation. Overexpression of miR-708-5p significantly inhibited cell proliferation and promoted the differentiation of myoblasts. A total of 253 target genes were predicted using a bioinformatics approach. These genes were significantly enriched in muscle growth-related GO terms and KEGG pathways, such as actin filament organization, actin cytoskeleton organization, PI3K-Akt pathway, insulin pathway, and Jak-STAT pathway. Among them, Pik3ca, Pik3r3, and Irs1 were considered to be the key target genes of miR-708-5p. To sum up, miR-708-5p inhibited C2C12 cells proliferation and promoted C2C12 cells differentiation. Its target genes significantly enriched in GO terms and KEGG pathways related to the development and growth of muscle. Our results provided a basis for studies on the function and mechanism of miR-708-5p regulating skeletal muscle growth and development.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36285165

RESUMO

Background: Danlou tablet (DLT), the traditional Chinese medicine has been commonly used for dyslipidemia, atherosclerosis, and coronary heart disease. Whether it was effective against vascular injury caused by CIH has remained unknown. The aim of the current study was to observe the effects of DLT on chronic intermittent hypoxia (CIH)-induced vascular injury via regulation of blood lipids and to explore potential mechanisms. Methods: Sixteen 12-week-old male ApoE-/- mice were randomly divided into four groups. The sham group was exposed to normal room air, whereas the other three groups were exposed to CIH. Mice in the CIH + normal saline (NS) group were gavaged with NS. Mice in the CIH + Angptl4-ab group were intraperitoneally injected with Angptl4-antibody. Mice in the CIH + DLT group were gavaged with DLT. After four weeks of intervention, serum lipid concentrations, and serum lipoprotein lipase (LPL) activity were detected. The changes in atherosclerosis in vascular tissue were detected by hematoxylin and eosin (H&E) staining. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were applied to detect the expression levels of hypoxia-induciblefactor-1 (HIF-1), factor-inhibiting HIF-1 (FIH-1), angiopoietin-like 4 (Angptl4), and LPL in different tissues. Results: CIH exposure increases serum lipid levels, decreases serum LPL activity, and exacerbates atherosclerosis. Both Angptl4-ab and DLT treatment reversed the changes in lipid concentration, LPL activity, and atherosclerosis caused by CIH. In the epididymal fat pad, CIH exposure decreased the expression of FIH-1 and increased the expression of HIF-1, whereas DLT treatment increased the expression of FIH-1 and LPL and inhibited the expression of HIF-1 and Angptl4. In heart tissue, the expression levels of LPL and Angptl4 were not affected by modeling or treatment. Conclusions: DLT improved vascular damage by improving the increase in blood lipids induced by CIH, potentially by upregulating FIH-1 and downregulating HIF-1 and Angptl4 in adipose tissue. Therefore, DLT may be a promising agent for the prevention and treatment of CIH-induced vascular injury.

20.
Antioxidants (Basel) ; 11(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36009333

RESUMO

This experiment aimed to investigate the effects of wheat and barley substitution for corn on growth performance, blood antioxidant capacity, intestinal health and fecal microbial composition in growing pigs. Eighteen healthy "Duroc × Landrace × Yorkshire" pigs (50 ± 0.85 kg) were randomly divided into three groups with six replicates and one pig per replicate. The three treatment groups were fed the basal diet (CON) based on corn and soybean meal, respectively, and the experimental group diet was partially replaced by wheat (WH) and barley (BL), respectively. The nutritional levels of the three treatments were the same. The experiment lasted 28 days. Wheat and barley partially replacing corn had no significant effects on growing pigs' growth performance, blood antioxidant capacity and nutrient digestibility (p > 0.05). Compared with CON and BL, WH significantly increased the duodenal villus height and villus height/crypt depth ratio of growing pigs (p < 0.05). Compared with CON, WH and BL significantly increased the contents of butyric acid, propionic acid and total volatile fatty acid (VFA) in the cecum and colonic digesta of growing pigs (p < 0.05). In addition, the abundance of Turicibacter, Escherichia-Shigella and other harmful bacteria in barley and wheat diet groups were significantly decreased at the genus level (p < 0.05). The abundance of Bifidobacterium, Lactobacillus, Prevotella and Roseburia increased significantly (p < 0.05). In conclusion, barley and wheat partially replacing corn as energy feedstuffs does not affect the growth performance of pigs but can regulate intestinal flora and promote intestinal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA