Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Dis ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679599

RESUMO

Cardamine violifolia, also called Cardamine hupingshanensis, is an economically important medicinal plant renowned for accumulating selenium (Guo et al., 2022). Selenium is an essential trace element with anti-oxidant, anti-inflammatory, anti-cancer, and immune regulatory functions. In July 2023, an outbreak of powdery mildew was detected, infecting the leaves of numerous C. violifolia plants in Enshi (30°11'5.27''N; 109°48'48.45''E), Hubei Province, China. This disease caused severe damage to plant leaves and stems, starting as individual spots and merging into a large mold that covers the entire leaf. It affected nearly 25% all C. violifolia plants, resulting in significant yield loss, disruption of normal metabolism, and premature aging. The lower leaf blades and underside of the leaves were particularly vulnerable. The affected leaves were collected and subjected to morphological diagnostic analysis (Mori et al., 2000) (Fig. S1). The powdery mildew species aggressively spread throughout the leaves, pedicels, and pods, persisting until present and often covering the entire surface. The conidiophores were upright, cylindrical, composed of 3 to 4 cells, and measured 92.3 ± 12.9 × 9.2 ± 0.6 µm (n = 30). Conidial pedicels had 21.6 ± 3.4 µm (n = 50) long cylindrical podocytes. The monoconidia were columnar or barrel-columnar, 30.60-55.59 × 9.11-20.00 µm in size. Conidia lacked an obvious cellulose body. The bud tubes formed from the end of conidia, and papillary appressoria developed on the epiphytic mycelia. ITS region sequences were amplified using the specific powdery mildew universal primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3'), PM6 (5'-GYCRCYCTGTCGCGAG-3') for partial sequences of 18S and 28S ribosomal DNA genes (Takamatsu et al., 2001). The sequence was deposited in the GenBank under the accession number OR506156 and aligned with available sequences on NCBI, which were 99.2%(528/532) identical to the E. cruciferarum (MT309701, MF192845, and KY660929) sequences (Fig. S2). The ITS sequence from GenBank was used to conduct maximum likelihood phylogenetic analysis using MEGA 11.0. The analysis results showed both the strain and E. cruciferarum clustered on the same branch. To confirm Koch's postulates, pathogenicity testing was carried out using an illuminating incubator. Infected leaves were attached to healthy leaves of C. violifolia seedlings (n=8). All the plants were incubated under 25℃ and >80% relative humidity. After one month, all inoculated plants presented the same symptoms as those initially observed in the field. Morphological and molecular analysis confirmed the isolated fungi's identity as the same pathogen. Therefore, C. violifolia is a suitable host for E. cruciferarum in China. The growers must be informed of these findings to prevent serious economic losses caused by this pathogenic white powder and to prepare for proper management practices. To our knowledge, this is the first report of E. cruciferarum infecting C. violifolia in China.

2.
Heliyon ; 10(4): e25884, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390149

RESUMO

Background: Human health is seriously threatened by particulate matter (PM) pollution, which is a major environmental problem. A better indicator of biological responses to PM exposure than its mass alone is the PM "oxidative potential (OP)," or ability to oxidize target molecules. When reactive oxygen species (ROS) are generated in the OP in excess of the antioxidant capacity of body due to PM components such metals and organic species, it causes inflammation, deoxyribonucleic acid (DNA), proteins, and lipids damage. Method: The samples of fine particulate matter (PM2.5) are collected from the brick kiln site and the roadside in Lahore, Pakistan. The organic carbon (OC) and elemental carbon (EC) were estimated by carbon analyzer (DRI 2001A) using the thermal/optical transmittance (TOT) protocol. The water-soluble organic carbon (WSOC) concentration was determined using a total organic carbon analyzer (Shimadzu TOC-L CPN). Ion chromatography (Dionex ICS-900) with a conductivity detector was used to analyze the water-soluble anions (Cl-, NO3-, and SO42-) and cations (NH4+, Na+, K+, Mg2+, and Ca2+). Inductively coupled plasma-mass spectrometry (iCAP TQ ICP-MS, Thermo Scientific) was used to determine the concentrations of metals in the solution. The dithiothreitol (DTT) consumption rate was calculated using a spectrophotometer at a wavelength of 412 nm. Results: The mean concentrations of PM2.5 at the brick kiln site and roadside reported are 509.3 ± 32.3 µg/m3 and 467.5 ± 24.9 µg/m3, and the average OC/EC ratio is 1.9 ± 0.4 and 2.1 ± 0.1. primary organic carbon (POC) contributed more to OC than secondary organic carbon (SOC), which indicated the dominance of primary combustion sources. The anion equivalent (AE) to cation equivalent (CE) ratio indicated that PM2.5 is acidic at both sites due to the dominance of NO3- and SO42-. The DTT consumption rate normalized by PM2.5 mass (DTTm) and DTT consumption rate normalized by air volume (DTTv) of PM2.5 at the roadside samples are higher than at the brick kiln site due to the higher contribution of ionic species to the mass of PM2.5. Carbonaceous species of PM2.5 at both sampling sites are significantly correlated with DTTv of PM2.5, while metallic species behaved differently. The incremental lifetime cancer risk (ILCR) values (lung cancer) of As and Cr at both sampling sites, while the ILCR value of Cd at the roadside samples is exceeding the permissible limits for adults and children. The lifetime average daily dose (LADD) value for adults is higher than that for children, indicating that children are less vulnerable to metals. Conclusion: The concentration of PM2.5 at both sampling sites were exceeding the permissible limits of Pakistan' National Environmental Quality Standard (NEQS) and posing risk to the health of the local population. The POC and SOC contribution to OC at the brick kiln site and roadside in Lahore were 84.6%, 15.4% and 84.4%, 15.6%. POC at both sampling sites were the dominant carbon species indicating the dominance of primary combustion sources. The residence of Lahore poses the lung cancer risk due to Cr, As, and Cd at both sampling sites. The results of this study provide important data and evidence for further evaluation of the potential health risks of PM2.5 from brick kiln site and road side in Pakistan and formulation of efficient air-pollution control measures.

3.
Adv Mater ; 36(19): e2311312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38145390

RESUMO

Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.

4.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37988285

RESUMO

Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the coronavirus disease 2019 pandemic, already established methods were challenged by the large genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Genética Reversa/métodos , RNA Viral/genética , Mutagênese
5.
Cell Rep Methods ; 3(6): 100485, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37426753

RESUMO

While combination therapy completely suppresses HIV-1 replication in blood, functional virus persists in CD4+ T cell subsets in non-peripheral compartments that are not easily accessible. To fill this gap, we investigated tissue-homing properties of cells that transiently appear in the circulating blood. Through cell separation and in vitro stimulation, the HIV-1 "Gag and Envelope reactivation co-detection assay" (GERDA) enables sensitive detection of Gag+/Env+ protein-expressing cells down to about one cell per million using flow cytometry. By associating GERDA with proviral DNA and polyA-RNA transcripts, we corroborate the presence and functionality of HIV-1 in critical body compartments utilizing t-distributed stochastic neighbor embedding (tSNE) and density-based spatial clustering of applications with noise (DBSCAN) clustering with low viral activity in circulating cells early after diagnosis. We demonstrate transcriptional HIV-1 reactivation at any time, potentially giving rise to intact, infectious particles. With single-cell level resolution, GERDA attributes virus production to lymph-node-homing cells with central memory T cells (TCMs) as main players, critical for HIV-1 reservoir eradication.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Linfócitos T CD4-Positivos , Subpopulações de Linfócitos T
6.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37292682

RESUMO

Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the COVID-19 pandemic, already established methods were challenged by the large genome of SARS-CoV-2. Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity, using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.

7.
ACS Appl Mater Interfaces ; 15(21): 26047-26059, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204772

RESUMO

Composite polymer electrolytes (CPEs) are attractive materials for solid-state lithium metal batteries, owing to their high ionic conductivity from ceramic ionic conductors and flexibility from polymer components. As with all lithium metal batteries, however, CPEs face the challenge of dendrite formation and propagation. Not only does this lower the critical current density (CCD) before cell shorting, but the uncontrolled growth of lithium deposits may limit Coulombic efficiency (CE) by creating dead lithium. Here, we present a fundamental study on how the ceramic components of CPEs influence these characteristics. CPE membranes based on poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI) with Li7La3Zr2O12 (LLZO) nanofibers were fabricated with industrially relevant roll-to-roll manufacturing techniques. Galvanostatic cycling with lithium symmetric cells shows that the CCD can be tripled by including 50 wt % LLZO, but half-cell cycling reveals that this comes at the cost of CE. Varying the LLZO loading shows that even a small amount of LLZO drastically lowers the CE, from 88% at 0 wt % LLZO to 77% at just 2 wt % LLZO. Mesoscale modeling reveals that the increase in CCD cannot be explained by an increase in the macroscopic or microscopic stiffness of the electrolyte; only the microstructure of the LLZO nanofibers in the PEO-LiTFSI matrix slows dendrite growth by presenting physical barriers that the dendrites must push or grow around. This tortuous lithium growth mechanism around the LLZO is corroborated with mass spectrometry imaging. This work highlights important elements to consider in the design of CPEs for high-efficiency lithium metal batteries.

9.
BMC Endocr Disord ; 22(1): 252, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266640

RESUMO

OBJECTIVE: The incidence of papillary thyroid cancer (PTC) concomitant with Hashimoto's thyroiditis (HT) is gradually increasing over the past decades. This study aims to identify differentially expressed lncRNAs between tumor tissues of PTC with or without HT and further to confer a better understanding of lncRNA-based competing endogenous RNA (ceRNA) network in PTC with HT. METHODS: GSE138198 containing tissue mRNA data and GSE192560 containing lncRNA data were utilized to perform differentially expression analysis. The ceRNA network was constructed based on miRNA-mRNA interactions merging with lncRNA-microRNA interactions. Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed. The mRNA levels of core genes in the PPI analysis in tumor tissues collected from 112 PTC patients including 35 cases coexistent with HT were determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: A total of 57 genes and 40 lncRNAs, with value of |log2 fold change (FC)|≥ 1 and the adjusted P-value < 0.05, were deemed as differentially expressed genes and lncRNAs between PTC with and without HT. The pathways most significantly enriched by differentially expressed genes between PTC with and without HT were viral protein interaction with cytokine and cytokine receptor and cytokine-cytokine receptor interaction. CXCL10, CXCL9, CCL5, FCGR3A, and CCR2 owned degree values not less than 10 were deemed as core genes differentially expressed between PTC with and without HT. A total of 76 pairs of lncRNA-miRNA-mRNA ceRNA were obtained. Results of qRT-PCR partially demonstrated the bioinformatics results that the mRNA levels of CXCL10, CXCL9, CCL5, and CCR2 were remarkably elevated in tumor tissues collected from PTC patients coexistent with HT than those without HT (P < 0.001). CONCLUSION: Our study offers a better understanding of the lncRNA-related ceRNA network involved in PTC with HT, providing novel key genes associated with PTC coexistent with HT.


Assuntos
Doença de Hashimoto , MicroRNAs , RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/complicações , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , RNA Longo não Codificante/genética , Doença de Hashimoto/complicações , Doença de Hashimoto/genética , Doença de Hashimoto/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias da Glândula Tireoide/complicações , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Citocinas , Receptores de Citocinas , Proteínas Virais
10.
Colloids Surf B Biointerfaces ; 217: 112655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785715

RESUMO

Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/patologia , Neoplasias/terapia , Peptídeos , Fagocitose , Microambiente Tumoral
11.
Int J Chron Obstruct Pulmon Dis ; 17: 1537-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811742

RESUMO

Purpose: Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods: Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results: COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-ß, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1-2 group vs Gold 3-4 group). The worse the patient's condition, the more pronounced the change. Conclusion: This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Surfactantes Pulmonares , Remodelação das Vias Aéreas , Animais , Biomarcadores , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Proteína D Associada a Surfactante Pulmonar/análise , Proteína D Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
12.
Micromachines (Basel) ; 13(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35630115

RESUMO

Micro/nanorobots are functional devices in microns, at nanoscale, which enable efficient propulsion through chemical reactions or external physical field, including ultrasonic, optical, magnetic, and other external fields, as well as microorganisms. Compared with traditional robots, micro/nanorobots can perform various tasks on the micro/nanoscale, which has the advantages of high precision, strong flexibility, and wide adaptability. In addition, such robots can also perform tasks in a cluster manner. The design and development of micro/nanorobots and the integration of surface functionalization, remote drive system, and imaging tracking technology will become a key step for their medical applications in organisms. Thus, micro/nanorobots are expected to achieve more efficient and accurate local diagnosis and treatment, and they have broad application prospects in the biomedical field. This paper aims to introduce relevant driving methods of micro/nanorobots preparation in detail, summarizes the progress of research in medical applications, and discusses the challenges it faces in clinical applications and the future direction of development.

13.
J Hazard Mater ; 433: 128839, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397338

RESUMO

Oxidative stress is the mainstream toxicological mechanism for the adverse health outcomes of ambient aerosols. However, our understanding of the crucial redox-active species affecting the oxidative potential of water-soluble aerosols (OPWS) remains limited. In this study, the OPWS of PM2.5 in Beijing was measured using dithiothreitol (DTT) assay, including DTT consumption rate and ·OH formation rate. OPWS was more closely related to water-soluble organic compounds (WSOC) rather than transition metals. Laboratory simulations were conducted to investigate the effects of individual target species in the context of complex metal-organic interactions. The results showed that reducing WSOC can effectively decrease OPWS, while reducing Cu2+ increased OPWS. Parallel factor analysis demonstrated that OPWS was the most significantly correlated with the highly oxidized humic-like or quinone-like substances. Multiple linear regression showed that aromatic secondary organic carbon (SOC) (34.4%), other primary combustion sources of WSOC (20.0%), primary biomass burning WSOC (19.8%), transition metal ions (12.9%) and biomass burning SOC (12.8%) made significant contributions to DTTV. In addition to the anthropogenic sources of WSOC, the aged biogenic SOC also contributed to OHV, particularly in summer. Reducing anthropogenic WSOC was the key to the effective control of OPWS of PM2.5 in Beijing.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Carbono/análise , Ditiotreitol , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Oxirredução , Estresse Oxidativo , Material Particulado/análise , Estações do Ano , Água/análise
14.
Front Immunol ; 13: 740513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350787

RESUMO

Objective: This study aims to identify clinically relevant diagnostic biomarkers in chronic obstructive pulmonary disease (COPD) while exploring how immune cell infiltration contributes towards COPD pathogenesis. Methods: The GEO database provided two human COPD gene expression datasets (GSE38974 and GSE76925; n=134) along with the relevant controls (n=49) for differentially expressed gene (DEG) analyses. Candidate biomarkers were identified using the support vector machine recursive feature elimination (SVM-RFE) analysis and the LASSO regression model. The discriminatory ability was determined using the area under the receiver operating characteristic curve (AUC) values. These candidate biomarkers were characterized in the GSE106986 dataset (14 COPD patients and 5 controls) in terms of their respective diagnostic values and expression levels. The CIBERSORT program was used to estimate patterns of tissue infiltration of 22 types of immune cells. Furthermore, the in vivo and in vitro model of COPD was established using cigarette smoke extract (CSE) to validated the bioinformatics results. Results: 80 genes were identified via DEG analysis that were primarily involved in cellular amino acid and metabolic processes, regulation of telomerase activity and phagocytosis, antigen processing and MHC class I-mediated peptide antigen presentation, and other biological processes. LASSO and SVM-RFE were used to further characterize the candidate diagnostic markers for COPD, SLC27A3, and STAU1. SLC27A3 and STAU1 were found to be diagnostic markers of COPD in the metadata cohort (AUC=0.734, AUC=0.745). Their relevance in COPD were validated in the GSE106986 dataset (AUC=0.900 AUC=0.971). Subsequent analysis of immune cell infiltration discovered an association between SLC27A3 and STAU1 with resting NK cells, plasma cells, eosinophils, activated mast cells, memory B cells, CD8+, CD4+, and helper follicular T-cells. The expressions of SLC27A3 and STAU1 were upregulated in COPD models both in vivo and in vitro. Immune infiltration activation was observed in COPD models, accompanied by the enhanced expression of SLC27A3 and STAU1. Whereas, the knockdown of SLC27A3 or STAU1 attenuated the effect of CSE on BEAS-2B cells. Conclusion: STUA1 and SLC27A3 are valuable diagnostic biomarkers of COPD. COPD pathogenesis is heavily influenced by patterns of immune cell infiltration. This study provides a molecular biology insight into COPD occurrence and in exploring new therapeutic means useful in COPD.


Assuntos
Genes MHC Classe I , Doença Pulmonar Obstrutiva Crônica , Algoritmos , Biomarcadores , Proteínas do Citoesqueleto/genética , Humanos , Aprendizado de Máquina , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Proteínas de Ligação a RNA/genética
15.
Sci Total Environ ; 806(Pt 1): 150247, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562762

RESUMO

Observations of volatile organic compounds (VOCs) are a prerequisite for evaluating the effectiveness of government efforts targeting VOC pollution. Here, based on the one-year online VOC measurement in 2018 in Beijing, systematic analyses and model simulation were conducted to illuminate VOC characteristics, emission sources, regional hotspots and behaviours in response to O3 formation. The observed mean VOC concentration in 2018 was 29.12 ± 17.64 ppbv declined distinctly compared to that in 2015 and 2016. Vehicle exhaust (39.95%), natural gas/liquefied petroleum gas (22.04%) and industrial sources (20.64%) were the main contributors to VOCs in Beijing. Regional transport, mainly from the south-south-east (SSE) and south-south-west (SSW), quantitatively contributed 36.65%-55.06% to VOCs based on our developed method. O3 sensitivity tended to be in the transition regime in summer identified by ground-based and satellite observations. Strong solar radiation along with high temperature and low humidity aggravated O3 pollution that was further intensified by regional transport from southern polluted regions. The model simulation determined that turning off CH3CHO related reactions brought about the most predominantly short-term and long-run O3 reduction, indicating that control policies in VOC species should be tailored, instead of one-size-fits-all. Overall, region-collaborated and active VOC-species-focused strategies on VOC controls are imperative.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Pequim , China , Monitoramento Ambiental , Ozônio/análise , Compostos Orgânicos Voláteis/análise
16.
Front Neurorobot ; 15: 692539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795571

RESUMO

Gait phase classification is important for rehabilitation training in patients with lower extremity motor dysfunction. Classification accuracy of the gait phase also directly affects the effect and rehabilitation training cycle. In this article, a multiple information (multi-information) fusion method for gait phase classification in lower limb rehabilitation exoskeleton is proposed to improve the classification accuracy. The advantage of this method is that a multi-information acquisition system is constructed, and a variety of information directly related to gait movement is synchronously collected. Multi-information includes the surface electromyography (sEMG) signals of the human lower limb during the gait movement, the angle information of the knee joints, and the plantar pressure information. The acquired multi-information is processed and input into a modified convolutional neural network (CNN) model to classify the gait phase. The experiment of gait phase classification with multi-information is carried out under different speed conditions, and the experiment is analyzed to obtain higher accuracy. At the same time, the gait phase classification results of multi-information and single information are compared. The experimental results verify the effectiveness of the multi-information fusion method. In addition, the delay time of each sensor and model classification time is measured, which shows that the system has tremendous real-time performance.

17.
MRS Bull ; 46(9): 822-831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539059

RESUMO

Abstract: The COVID-19 pandemic triggered a surge in demand for N95 or equivalent respirators that the global supply chain was unable to satisfy. This shortage in critical equipment has inspired research that addresses the immediate problems and has accelerated the development of the next-generation filtration media and respirators. This article provides a brief review of the most recent work with regard to face respirators and filtration media. We discuss filtration efficiency of the widely utilized cloth masks. Next, the sterilization of and reuse of existing N95 respirators to extend the existing stockpile is discussed. To expand near-term supplies, optimization of current manufacturing methods, such as melt-blown processes and electrospinning, has been explored. Future manufacturing methods have been investigated to address long-term supply shortages. Novel materials with antiviral and sterilizable properties with the ability for multiple reuses have been developed and will contribute to the development of the next generation of longer lasting multi-use N95 respirators. Finally, additively manufactured respirators are reviewed, which enable a rapidly deployable source of reusable respirators that can use any filtration fabric.

18.
Radiol Case Rep ; 16(11): 3389-3391, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34504631

RESUMO

Sparganosis is a rare disease caused by the infestation of the plerocercoid tapeworm larva of the genus Spirometra. Human sparganosis is most commonly encountered in subcutaneous fat areas of the abdomen, limbs, and genitourinary tract. Breast sparganosis occur very rarely, accounting for less than 2% of total human sparganosis cases. Because of the disease's rarity, clinical suspicion is essential to reach the diagnosis of breast sparganosis. We present a case of mammary sparganosis in a 58 year-old woman on the ultrasonographic findings. The patient had a painless breast lump with a history of drinking impure water. On ultrasonography (US), we noted four masses, the largest lesion was suspected as sparganosis, and others tended to be benign lesions. The patient was treated following excisions by a US guided Vacuum-assisted breast biopsy system (VABB). The final diagnosis of all lesions was sparganosis.

19.
Front Oncol ; 11: 705869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277450

RESUMO

BACKGROUND: A detailed means of prognostic stratification in patients with non-small cell lung cancer (NSCLC) is urgently needed to support individualized treatment plans. Recently, microRNAs (miRNAs) have been used as biomarkers due to their previously reported prognostic roles in cancer. This study aimed to construct an immune-related miRNA signature that effectively predicts NSCLC patient prognosis. METHODS: The miRNAs and mRNA expression and mutation data of NSCLC was obtained from The Cancer Genome Atlas (TCGA). Immune-associated miRNAs were identified using immune scores calculated by the ESTIMATE algorithm. LASSO-penalized multivariate survival models were using for development of a tumor immune-related miRNA signature (TIM-Sig), which was evaluated in several public cohorts from the Gene Expression Omnibus (GEO) and the CellMiner database. The miRTarBase was used for constructing the miRNA-target interactions. RESULTS: The TIM-Sig, including 10 immune-related miRNAs, was constructed and successfully predicted overall survival (OS) in the validation cohorts. TIM-Sig score negatively correlated with CD8+ T cell infiltration, IFN-γ expression, CYT activity, and tumor mutation burden. The correlation between TIM-Sig score and genomic mutation and cancer chemotherapeutics was also evaluated. A miRNA-target network of 10 miRNAs in TIM-Sig was constructed. Further analysis revealed that these target genes showed prognostic value in both lung squamous cell carcinoma and adenocarcinoma. CONCLUSIONS: We concluded that the immune-related miRNAs demonstrated a potential value in clinical prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA