Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38814793

RESUMO

BACKGROUND: Daptomycin is widely used in critically ill patients for Gram-positive bacterial infections. Extracorporeal membrane oxygenation (ECMO) is increasingly used in this population and can potentially alter the pharmacokinetic (PK) behaviour of antibiotics. However, the effect of ECMO has not been evaluated in daptomycin. Our study aims to explore the effect of ECMO on daptomycin in critically ill patients through population pharmacokinetic (PopPK) analysis and to determine optimal dosage regimens based on both efficacy and safety considerations. METHODS: A prospective, open-label PK study was carried out in critically ill patients with or without ECMO. The total concentration of daptomycin was determined by UPLC-MS/MS. NONMEM was used for PopPK analysis and Monte Carlo simulations. RESULTS: Two hundred and ninety-three plasma samples were collected from 36 critically ill patients, 24 of whom received ECMO support. A two-compartment model with first-order elimination can best describe the PK of daptomycin. Creatinine clearance (CLCR) significantly affects the clearance of daptomycin while ECMO has no significant effect on the PK parameters. Monte Carlo simulations showed that, when the MICs for bacteria are  ≥1 mg/L, the currently recommended dosage regimen is insufficient for critically ill patients with CLCR > 30 mL/min. Our simulations suggest 10 mg/kg for patients with CLCR between 30 and 90 mL/min, and 12 mg/kg for patients with CLCR higher than 90 mL/min. CONCLUSIONS: This is the first PopPK model of daptomycin in ECMO patients. Optimal dosage regimens considering efficacy, safety, and pathogens were provided for critical patients based on pharmacokinetic-pharmacodynamic analysis.

2.
Plant Divers ; 46(2): 256-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807914

RESUMO

Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.

3.
J Int Med Res ; 52(1): 3000605231222214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190841

RESUMO

Persistent hyperplastic primary vitreous (PHPV) is a rare congenital developmental ocular disorder caused by incomplete regression of the embryonic hyaloid vasculature; bilateral presentations are even rarer. We report a 6-year-old child with bilateral PHPV who visited our hospital for strabismus, without exhibiting leukocoria, microphthalmia, and systemic diseases. These unique characteristics distinguish our case from other cases of PHPV. It is crucial to increase awareness of congenital eye disease in children and the importance of performing fundus examination with the pupils dilated.


Assuntos
Vítreo Primário Hiperplásico Persistente , Estrabismo , Criança , Humanos , Hiperplasia , Estrabismo/diagnóstico , Estrabismo/etiologia , Olho , Face
4.
Sci Adv ; 10(3): eadj4196, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241377

RESUMO

Anxiety and depression are frequently observed in patients suffering from trigeminal neuralgia (TN), but neural circuits and mechanisms underlying this association are poorly understood. Here, we identified a dedicated neural circuit from the ventral hippocampus (vHPC) to the medial prefrontal cortex (mPFC) that mediates TN-related anxiodepression. We found that TN caused an increase in excitatory synaptic transmission from vHPCCaMK2A neurons to mPFC inhibitory neurons marked by the expression of corticotropin-releasing hormone (CRH). Activation of CRH+ neurons subsequently led to feed-forward inhibition of layer V pyramidal neurons in the mPFC via activation of the CRH receptor 1 (CRHR1). Inhibition of the vHPCCaMK2A-mPFCCRH circuit ameliorated TN-induced anxiodepression, whereas activating this pathway sufficiently produced anxiodepressive-like behaviors. Thus, our studies identified a neural pathway driving pain-related anxiodepression and a molecular target for treating pain-related psychiatric disorders.


Assuntos
Hormônio Liberador da Corticotropina , Neuralgia do Trigêmeo , Humanos , Hormônio Liberador da Corticotropina/metabolismo , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/metabolismo , Neurônios/metabolismo , Hipocampo/fisiologia , Dor/metabolismo
5.
Brain Behav Immun ; 117: 224-241, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38244946

RESUMO

Glial activation and dysregulation of adenosine triphosphate (ATP)/adenosine are involved in the neuropathology of several neuropsychiatric illnesses. The ventral hippocampus (vHPC) has attracted considerable attention in relation to its role in emotional regulation. However, it is not yet clear how vHPC glia and their derived adenosine regulate the anxiodepressive-like consequences of chronic pain. Here, we report that chronic cheek pain elevates vHPC extracellular ATP/adenosine in a mouse model resembling trigeminal neuralgia (rTN), which mediates pain-related anxiodepression, through a mechanism that involves synergistic effects of astrocytes and microglia. We found that rTN resulted in robust activation of astrocytes and microglia in the CA1 area of the vHPC (vCA1). Genetic or pharmacological inhibition of astrocytes and connexin 43, a hemichannel mainly distributed in astrocytes, completely attenuated rTN-induced extracellular ATP/adenosine elevation and anxiodepressive-like behaviors. Moreover, inhibiting microglia and CD39, an enzyme primarily expressed in microglia that degrades ATP into adenosine, significantly suppressed the increase in extracellular adenosine and anxiodepressive-like behaviors. Blockade of the adenosine A2A receptor (A2AR) alleviated rTN-induced anxiodepressive-like behaviors. Furthermore, interleukin (IL)-17A, a pro-inflammatory cytokine probably released by activated microglia, markedly increased intracellular calcium in vCA1 astrocytes and triggered ATP/adenosine release. The astrocytic metabolic inhibitor fluorocitrate and the CD39 inhibitor ARL 67156, attenuated IL-17A-induced increases in extracellular ATP and adenosine, respectively. In addition, astrocytes, microglia, CD39, and A2AR inhibitors all reversed rTN-induced hyperexcitability of pyramidal neurons in the vCA1. Taken together, these findings suggest that activation of astrocytes and microglia in the vCA1 increases extracellular adenosine, which leads to pain-related anxiodepression via A2AR activation. Approaches targeting astrocytes, microglia, and adenosine signaling may serve as novel therapies for pain-related anxiety and depression.


Assuntos
Dor Crônica , Neuralgia do Trigêmeo , Animais , Camundongos , Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Modelos Animais de Doenças , Hipocampo , Microglia
6.
Medicine (Baltimore) ; 102(50): e36574, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115335

RESUMO

BACKGROUND: To report a case of endophthalmitis in a silicone oil (SO)-filled eye associated with Staphylococcus cohnii. After vitrectomy, the environment for bacterial growth in the eye is removed, and SO has antibacterial effect on a variety of microorganisms. Endophthalmitis is seen in about 0.040% cases after pars plana vitrectomy and is even more uncommon in cases where SO is used. METHODS: The patient was diagnosed as endophthalmitis and admitted to our hospital for emergency. The main concern is if intraocular infection can be controlled and the visual prognosis. In this case, multiple intravitreal antibiotics injection and anterior chamber washout were performed. Not only that, phacoemulsification was performed. RESULTS: Hypopyon became less after 3 operations were performed. The infection was under control finally. CONCLUSION: To the best of our knowledge, it is the first report of S. cohnii endophthalmitis in an SO-filled globe of an middle-aged patient. It is important to treat infective endophthalmitis with antibiotics promptly. Delayed therapy may affect the visual prognosis.


Assuntos
Endoftalmite , Infecções Oculares Bacterianas , Pessoa de Meia-Idade , Humanos , Vitrectomia/efeitos adversos , Óleos de Silicone , Endoftalmite/diagnóstico , Endoftalmite/tratamento farmacológico , Endoftalmite/etiologia , Antibacterianos/uso terapêutico , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/tratamento farmacológico , Infecções Oculares Bacterianas/etiologia , Estudos Retrospectivos
7.
Physiol Behav ; 271: 114342, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673233

RESUMO

Hormone supplementation is one of the common therapies for menopause-related disorders. Among different tools, the ovariectomy (OVX) rodents are widely accepted as an appropriate menopausal pain model. Our previous study has showed that OVX produces a significant pain facilitation in both acute pain and tonic pain, however, the underlying mechanisms remain unclear. In this study, we examined the effects of OVX treatment and estradiol (E2) supplementation on formalin-induced nociceptive responses, and explored the associated spinal mechanisms. Female Sprague-Dawley rats underwent bilateral OVX, and E2 supplementation was given subcutaneously from the 5th week after surgery (30 µg/day for 7 days). Our results showed that formalin-induced nociceptive behaviors did not differ between diestrus and proestrus stages of the estrous in intact rats. However, OVX exacerbated formalin-evoked inflammatory pain, especially in the late phase at 4-5 weeks but not 2 weeks post-surgery. E2 supplementation significantly reversed the OVX-triggered hyperalgesia. Double immunofluorescence staining revealed that both ERα and ERß in the spinal dorsal horn were co-labeled with the neuronal markers, but not with markers of astrocytes or microglia. The spinal ERα (but not ERß) expression significantly increased in the OVX group, which was reversed by E2 supplementation. Moreover, the OVX individuals showed an increased protein kinase B (AKT) level in lumbar spinal cord, and E2 supplementation diminished the AKT expression in OVX rats. Finally, intrathecal injection Wortmannin, an inhibitor for AKT signaling, effectively reduced the nociceptive behaviors in the late phase and the number of c-fos positive cells. Together, our findings indicate that E2 supplementation alleviates the OVX-induced hyperalgesia, which might be involved in spinal ERα and AKT mechanisms.

8.
Neurobiol Dis ; 183: 106176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263384

RESUMO

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Assuntos
Aminoglicosídeos , Ototoxicidade , Animais , Camundongos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidade/metabolismo , Antibacterianos/toxicidade , Neomicina/toxicidade , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Trifosfato de Adenosina/metabolismo
9.
Neurosci Lett ; 809: 137307, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37211325

RESUMO

The demethylase JmjC structural domain-containing protein 8 (JMJD8) has been demonstrated to be involved in cellular inflammatory responses. Neuropathic pain (NP) is a chronic pain, and it is unclear whether JMJD8 is involved in the regulation of NP. Using a chronic constriction injury (CCI) mouse model of NP, we investigated the expression levels of JMJD8 during NP and the influences of JMJD8 on regulating pain sensitivity. We found that JMJD8 expression in the spinal dorsal horn was reduced after CCI. Immunohistochemistry showed that JMJD8 was colabeled with GFAP in naïve mice. Knockdown of JMJD8 in the spinal dorsal horn astrocytes induced pain behavior. Further study showed that overexpression of JMJD8 in the spinal dorsal horn astrocytes not only reversed pain behavior but also activated the spinal dorsal horn A1 astrocytes. These results suggest that JMJD8 may modulate pain sensitivity by affecting activated the spinal dorsal horn A1 astrocytes and may be a potential therapeutic target for NP.


Assuntos
Astrócitos , Neuralgia , Animais , Camundongos , Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Limiar da Dor/fisiologia , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
10.
Psychol Sci ; 34(5): 616-632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040450

RESUMO

Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.


Assuntos
Derrota Social , Sinaptossomos , Animais , Camundongos , Hipocampo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Estresse Psicológico
11.
Life Sci ; 322: 121669, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023950

RESUMO

Pain and obesity, as well as their associated impairments, are major health concerns. Understanding the relationship between the two is the focus of a growing body of research. However, early researches attribute increased mechanical stress from excessive weight as the main factor of obesity-related pain, which not only over-simplify the association, but also fail to explain some controversial outcomes arising from clinical investigations. This review focuses on neuroendocrine and neuroimmune modulators importantly involved in both pain and obesity, analyzing nociceptive and anti-nociceptive mechanisms based on neuroendocrine pathways including galanin, ghrelin, leptin and their interactions with other neuropeptides and hormone systems which have been reported to play roles in pain and obesity. Mechanisms of immune activities and metabolic alterations are also discussed, due to their intense interactions with neuroendocrine system and crucial roles in the development and maintenance of inflammatory and neuropathic pain. These findings have implications for health given rising rates of obesity and pain-related diagnoses, by providing novel weight-control and analgesic therapies targeted on specific pathways.


Assuntos
Neuralgia , Neuroimunomodulação , Humanos , Obesidade/complicações , Obesidade/epidemiologia , Sistemas Neurossecretores , Comorbidade
12.
Sci Adv ; 9(12): eadf4651, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947616

RESUMO

Light modulates mood through various retina-brain pathways. We showed that mice treated with short-term acute bright light exposure displayed anxiety-related phenotypes in a prolonged manner even after the termination of the exposure. Such a postexposure anxiogenic effect depended upon melanopsin-based intrinsically photosensitive retinal ganglion cell (ipRGC) activities rather than rod/cone photoreceptor inputs. Chemogenetic manipulation of specific central nuclei demonstrated that the ipRGC-central amygdala (CeA) visual circuit played a key role in this effect. The corticosterone system was likely to be involved in this effect, as evidenced by enhanced expression of the glucocorticoid receptor (GR) protein in the CeA and the bed nucleus of the stria terminalis and by the absence of this effect in animals treated with the GR antagonist. Together, our findings reveal a non-image forming visual circuit specifically designed for "the delayed" extinction of anxiety against potential threats, thus conferring a survival advantage.


Assuntos
Núcleo Central da Amígdala , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras de Vertebrados/metabolismo , Luz
13.
J Neuroimmunol ; 377: 578068, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948094

RESUMO

Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 µg/10 µL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 µg/10 µL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.


Assuntos
Interleucina-17 , Neuralgia , Ratos , Camundongos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Medula Espinal/metabolismo , Sinapses/metabolismo
14.
Neuromolecular Med ; 25(3): 375-387, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36971954

RESUMO

The medial prefrontal cortex (mPFC) is critical for both the sensory and emotional/cognitive components of pain. However, the underlying mechanism remains largely unknown. Here, we examined changes in the transcriptomic profiles in the mPFC of mice with chronic pain using RNA sequencing (RNA-seq) technology. A mouse model of peripheral neuropathic pain was established via chronic constriction injury (CCI) of the sciatic nerve. CCI mice developed sustained mechanical allodynia and thermal hyperalgesia, as well as cognitive impairment four weeks after surgery. RNA-seq was conducted 4 weeks after CCI surgery. Compared with contral group, RNA-seq identified a total 309 and 222 differentially expressed genes (DEGs) in the ipsilateral and contralateral mPFC of CCI model mice, respectively. GO analysis indicated that the functions of these genes were mainly enriched in immune- and inflammation-related processes such as interferon-gamma production and cytokine secretion. KEGG analysis further showed the enrichment of genes involved in the neuroactive ligand-receptor interaction signaling pathway and Parkinson disease pathway that have been reported to be importantly involved in chronic neuralgia and cognitive dysfunction. Our study may provide insights into the possible mechanisms underlying neuropathic pain and pain-related comorbidities.


Assuntos
Hiperalgesia , Neuralgia , Camundongos , Animais , Constrição , Hiperalgesia/genética , Neuralgia/genética , Perfilação da Expressão Gênica , Córtex Pré-Frontal/metabolismo
15.
Brain Res Bull ; 195: 130-140, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36828203

RESUMO

Inflammatory microglia and P2X7R are involved in the development of stress-induced depression. Endoplasmic reticulum (ER) stress and mitochondrial damage play an important role in depression and microglial activation. Bullatine A (BLA) has anti-inflammatory and anti-rheumatic effects, and can be used as a P2X7R antagonist. We found that Bullatine A can effectively inhibit the calcium overload of mitochondria and the increase of ER and mitochondrial colocalization caused by eATP (extracellular ATP) in BV2-cells. Bullatine A can also inhibit the activation of PERK-elF-2α unfolded protein response (UPR), lysosome production and the increase of NLRP3 inflammasome protein expression in BV2-cells Both intragastric administration and intra-hippocampal microinjection of Bullatine A can significantly improve the despair behavior but not anhedonia of Chronic chronic social defeat stress (CSDS) mice. Bullatine A may have a beneficial therapeutic effect in treating diseases related to stress stimulation, such as depression.


Assuntos
Inflamassomos , Microglia , Camundongos , Animais , Inflamassomos/metabolismo , Microglia/metabolismo , Derrota Social , Antidepressivos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse do Retículo Endoplasmático
16.
Br J Pharmacol ; 180(8): 1090-1113, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36443951

RESUMO

BACKGROUND AND PURPOSE: Patients suffering from trigeminal neuralgia are often accompanied by anxiety and depression. Microglia-mediated neuroinflammation is involved in the development of neuropathic pain and anxiodepression pathogenesis. Whether and how microglia are involved in trigeminal neuralgia-induced anxiodepression remains unclear. EXPERIMENTAL APPROACH: Unilateral constriction of the infraorbital nerve (CION) was performed to establish trigeminal neuralgia in rat and mouse models. Mechanical allodynia and anxiodepressive-like behaviours were measured. Optogenetic and pharmacological manipulations were employed to investigate the role of hippocampal microglia in anxiety and depression caused by trigeminal neuralgia. KEY RESULTS: Trigeminal neuralgia activated ipsilateral but not contralateral hippocampal microglia, up-regulated ipsilateral hippocampal ATP and interleukin-1ß (IL-1ß) levels, impaired ipsilateral hippocampal long-term potentiation (LTP) and induced anxiodepressive-like behaviours in a time-dependent manner in rodents. Pharmacological or optogenetic inhibition of ipsilateral hippocampal microglia completely blocked trigeminal neuralgia-induced anxiodepressive-like behaviours. Activation of unilateral hippocampal microglia directly elicited an anxiodepressive state and impaired hippocampal LTP. Knockdown of ipsilateral hippocampal P2X7 receptors prevented trigeminal neuralgia-induced microglial activation and anxiodepressive-like behaviours. Furthermore, we demonstrated that microglia-derived IL-1ß mediated microglial activation-induced anxiodepressive-like behaviours and LTP impairment. CONCLUSION AND IMPLICATIONS: These findings suggest that priming of microglia with ATP/P2X7 receptors in the ipsilateral hippocampus drives pain-related anxiodepressive-like behaviours via IL-1ß. An asymmetric role of the bilateral hippocampus in trigeminal neuralgia-induced anxiety and depression was uncovered. The approaches targeting microglia and P2X7 signalling might offer novel therapies for trigeminal neuralgia-related anxiety and depressive disorder.


Assuntos
Neuralgia , Neuralgia do Trigêmeo , Camundongos , Ratos , Animais , Neuralgia do Trigêmeo/patologia , Microglia/patologia , Roedores , Hipocampo , Hiperalgesia , Trifosfato de Adenosina
17.
Biomater Adv ; 145: 213252, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36563510

RESUMO

To obtain multifunctional materials suitable for guiding alveolar bone regeneration under infectious conditions, we prepared asymmetric membranes comprising space acquiring layer that involves fibroblast inhibitor poly(p-dioxanone-co-L-phenylalanine) (PDPA), an isolating dense layer that forms barrier between two layers and an osteogenesis inducing electrospinning layer which involves hydroxyapatite or hydroxyapatite & minocycline. Then the composition, crystallization, morphology, and hydrophilicity of asymmetric membranes were analyzed. Minocycline incorporated membranes controlled the expansion of Porphyromonas gingivalis (P. gingivalis) in vitro. Hydroxyapatite-incorporated asymmetric membranes promoted the expression of osteogenesis related genes RUNX2, OPN, ALP of MC3T3-E1 cells in vitro. The mineralization of MC3T3-E1 cells cultured with hydroxyapatite-incorporated asymmetric membranes were also promoted in vitro. Asymmetric membranes especially hydroxyapatite-incorporated ones guided the regeneration of the mandibular bone defect in vivo. Bone regeneration guided under infectious conditions was evaluated in a P. gingivalis infected alveolar bone defect model. Specifically, space acquiring layer containing asymmetric membranes effectively controlled connective tissue hyperplasia at defect sites. The excellent guided bone regeneration achieved by applying a single space acquiring layer membrane further indicates the importance of acquiring space actively to induce bone regeneration. Hydroxyapatite-minocycline incorporated symmetric membranes could simultaneously suppress alveolar bone reabsorption caused by infection and guide regeneration of defects. Therefore, the hydroxyapatite-minocycline incorporated asymmetric membrane may be more suitable to be applied in guiding regeneration of bone defects under complex infectious conditions.


Assuntos
Membranas Artificiais , Minociclina , Regeneração Óssea , Durapatita/química , Durapatita/farmacologia , Minociclina/farmacologia , Osteogênese , Animais , Camundongos
18.
Pain Med ; 24(1): 11-24, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-35916732

RESUMO

BACKGROUND: As a traditional Chinese therapy, acupuncture is proposed worldwide as a treatment for pain and other health problems, but findings on acupuncture analgesia have been inconsistent because of its variable modalities of therapeutic intervention. OBJECTIVE: This study aimed to evaluate the existing animal studies for evidence on acupuncture and its effect on glia in association with a reduction in pain conditions. METHODS: Literature searches were performed in four English- and Chinese-language databases (Web of Science, PubMed, EMBASE, and CNKI) on October 8, 2021. Included studies reported the pain outcome (e.g., paw withdrawal latency, paw withdrawal threshold) and glia outcome (e.g., glial marker GFPA, Iba1, and OX42) in pain-induced animals during acupuncture treatment. RESULTS: Fifty-two preclinical studies were included in the meta-analysis. A single acupuncture treatment in rodents had an analgesic effect, which was more effective in inflammatory pain than in neuropathic pain in the early phase of treatment. The analgesic efficacy became more curative after repeated acupuncture. Furthermore, acupuncture treatment could effectively inhibit the activity of astrocytes and microglia in both inflammatory pain and neuropathic pain in a time-course pattern. CONCLUSIONS: Acupuncture treatment improves analgesic effect in rodent pain conditions under the possible mechanism of glial inhibition. Therefore, these results provide an opportunity to evaluate the effectiveness of acupuncture analgesia and neuroinflammation in animal models to research further neurobiological mechanisms and to inform the design of future clinical trials. STUDY REGISTRATION: PROSPERO (ID: CRD42020196011).


Assuntos
Analgesia por Acupuntura , Terapia por Acupuntura , Neuralgia , Animais , Terapia por Acupuntura/métodos , Neuralgia/terapia , Analgésicos , Microglia
19.
Sci Transl Med ; 14(674): eabq6474, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475906

RESUMO

Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.


Assuntos
Corpos Geniculados , Manejo da Dor , Camundongos , Animais , Dor
20.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36290610

RESUMO

An estimated 20% of women experience depression at some point during menopause. Hormone replacement therapy (HRT), as the main therapy for depression and other menopausal syndromes, comes with a few undesirable side effects and a potential increase in cancer and cardiovascular risk. Consequently, there is a dire need for the development of new therapies to treat menopausal depression. Oxidative stress combined with the decline in sex hormones might explain the occurrence of psychological symptoms characteristic of menopause. Therefore, antioxidants have been suggested as a promising therapy for aging-associated diseases, such as menopausal depression. As a flavonoid antioxidant, kaempferol might have a potential neuroprotective action. Hence, the study was conducted to assess the potential antidepressant action of kaempferol and clarify the underlying mechanism. The results show that kaempferol has potential beneficial effects on VCD-induced rodent model of menopausal depression and produces antioxidant effects as well as increases the deacetylation of superoxide dismutase 2 (SOD2) and the protein level of Sirtuin3 (Sirt3) in the hippocampus. On the contrary, Sirt3 depletion abrogated the antidepressant- and anxiolytic-like effects as well as antioxidant effects of kaempferol. In conclusion, kaempferol might produce antidepressant effects via upregulating the expression of Sirt3, the major deacetylase in mitochondria, and subsequently activate the mitochondrial antioxidases. These findings shed some light on the use of kaempferol or vegetables and herbs that contain kaempferol as a complementary therapy for menopausal depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA