Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 126, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350238

RESUMO

Long-chain fatty acid transport protein 1 (FATP1) is a member of the fatty acid transporter family. It facilitates transmembrane transport of fatty acids and participates in lipid metabolism. Lipids are essential components of the cell and organelle membranes of Trichinella spiralis. The nematode has lost the capacity to synthesise the necessary lipids de novo and has instead evolved to obtain fatty acids and their derivatives from its host. This study aims to ascertain the primary biological characteristics and roles of T. spiralis FATP1 (TsFATP1) in lipid metabolism, larval moulting, and the development of this nematode. The results show that TsFATP1 is highly expressed at enteral T. spiralis stages, mainly localised at the cuticle, the stichosome and the intrauterine embryos of the parasite. The silencing of the TsFATP1 gene by TsFATP1-specific dsRNA significantly decreases the expression levels of TsFATP1 in the worm. It reduces the contents of ATP, triglycerides, total cholesterol, and phospholipids both in vitro and in vivo. RNAi inhibits lipid metabolism, moulting, and the growth of this nematode. The results demonstrate that TsFATP1 plays an essential role in lipid metabolism, moulting, and the development of T. spiralis. It could also be a target candidate for the anti-Trichinella vaccine and drugs.


Assuntos
Proteínas de Transporte de Ácido Graxo , Proteínas de Helminto , Larva , Metabolismo dos Lipídeos , Trichinella spiralis , Animais , Trichinella spiralis/genética , Trichinella spiralis/fisiologia , Trichinella spiralis/metabolismo , Trichinella spiralis/crescimento & desenvolvimento , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Transporte de Ácido Graxo/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Muda/fisiologia , Camundongos , Feminino , Triquinelose/parasitologia , Triquinelose/veterinária
2.
Parasite ; 31: 65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39465975

RESUMO

Glutamate dehydrogenase (GDH) plays an important role in the metabolism of organisms. Its high abundance in mitochondria in particular highlights its core role in cellular physiological processes. GDH catalyzes the mutual conversion between L-glutamic acid and α-ketoglutaric acids. At the same time, this transformation is accompanied by the oxidation-reduction of NAD(H) or NADP(H). This process not only helps to link amino acid metabolism with sugar metabolism, but also helps maintain the balance of intracellular pH and nitrogen homeostasis. In this study, a novel Trichinella spiralis glutamate dehydrogenase (TsGDH) was cloned, expressed and identified. The results revealed that TsGDH was expressed at various stages of development of the nematode T. spiralis, with higher expression levels in the adult worm stage, and was mainly localized in the cuticle, muscular layer, stichosome and female intrauterine embryos. After RNAi treatment, larval natural TsGDH enzyme activity was obviously reduced, and metabolism, molting, growth and reproduction were also significantly inhibited. The results indicate that TsGDH plays an important role in the development and survival of T. spiralis, and it may be a potential molecular target of anti-Trichinella vaccines and drugs.


Title: Caractéristiques biologiques et fonctions d'une nouvelle glutamate déshydrogénase de Trichinella spiralis. Abstract: La glutamate déshydrogénase (GDH) joue un rôle important dans le métabolisme des organismes. En particulier, sa forte abondance dans les mitochondries souligne son rôle essentiel dans les processus physiologiques cellulaires. La GDH catalyse la conversion mutuelle entre l'acide L-glutamique et les acides α-cétoglutariques. Dans le même temps, cette transformation s'accompagne de l'oxydoréduction du NAD(H) ou du NADP(H). Ce processus permet non seulement de lier le métabolisme des acides aminés au métabolisme du sucre, mais également de maintenir l'équilibre du pH intracellulaire et l'homéostasie de l'azote. Dans cette étude, une nouvelle glutamate déshydrogénase de Trichinella spiralis (TsGDH) a été clonée, exprimée et identifiée. Les résultats ont révélé que la TsGDH était exprimée à différents stades de développement du nématode T. spiralis, avec un niveau d'expression plus élevé au stade adulte du ver, et qu'elle est principalement localisée dans la cuticule, la couche musculaire, le stichosome et les embryons intra-utérins chez les femelles. Après traitement par ARN interférent, l'activité enzymatique naturelle de la TsGDH des larves était réduite, et le métabolisme, la mue, la croissance et la reproduction étaient également significativement inhibés. Les résultats indiquent que la TsGDH joue un rôle important dans le développement et la survie de T. spiralis, et qu'elle pourrait être une cible moléculaire potentielle pour un vaccin et des médicaments anti-Trichinella.


Assuntos
Glutamato Desidrogenase , Trichinella spiralis , Animais , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Trichinella spiralis/enzimologia , Trichinella spiralis/genética , Trichinella spiralis/crescimento & desenvolvimento , Feminino , Clonagem Molecular , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/genética , Sequência de Aminoácidos , Interferência de RNA , Filogenia , Masculino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Alinhamento de Sequência
3.
Vet Res ; 54(1): 113, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012694

RESUMO

Previous studies showed that Trichinella spiralis galectin (Tsgal) facilitates larval invasion of intestinal epithelium cells (IECs). However, IEC proteins binding with Tsgal were not identified, and the mechanism by which Tsgal promotes larval invasion is not clear. Toll-like receptors (TLRs) are protein receptors responsible for recognition of pathogens. The aim of this study was to investigate whether recombinant Tsgal (rTsgal) binds to TLR-4, activates inflammatory pathway in gut epithelium and mediates T. spiralis invasion. Indirect immunofluorescence (IIF), GST pull-down and co-immunoprecipitation (Co-IP) assays confirmed specific binding between rTsgal and TLR-4 in Caco-2 cells. qPCR and Western blotting showed that binding of rTsgal with TLR-4 up-regulated the TLR-4 transcription and expression in Caco-2 cells, and activated p-NF-κB p65 and p-ERK1/2. Activation of inflammatory pathway TLR-4/MAPK-NF-κB by rTsgal up-regulated pro-inflammatory cytokines (IL-1ß and IL-6) and down-regulated anti-inflammatory cytokine TGF-ß in Caco-2 cells, and induced intestinal inflammation. TAK-242 (TLR-4 inhibitor) and PDTC (NF-κB inhibitor) significantly inhibited the activation of TLR-4 and MAPK-NF-κB pathway. Moreover, the two inhibitors also inhibited IL-1ß and IL-6 expression, and increased TGF-ß expression in Caco-2 cells. In T. spiralis infected mice, the two inhibitors also inhibited the activation of TLR-4/MAPK-NF-κB pathway, ameliorated intestinal inflammation, impeded larval invasion of gut mucosa and reduced intestinal adult burdens. The results showed that rTsgal binding to TLR-4 in gut epithelium activated MAPK-NF-κB signaling pathway, induced the expression of TLR-4 and pro-inflammatory cytokines, and mediated larval invasion. Tsgal might be regarded as a candidate molecular target of vaccine against T. spiralis enteral invasive stage.


Assuntos
Trichinella spiralis , Camundongos , Animais , Humanos , Trichinella spiralis/fisiologia , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Células CACO-2 , Larva/fisiologia , Galectinas , Interleucina-6 , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Inflamação/veterinária , Fator de Crescimento Transformador beta
4.
PLoS Negl Trop Dis ; 17(9): e0011629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695792

RESUMO

BACKGROUND: A novel serine proteinase of Trichinells spiralis (TsSPc) has been identified in the excretion/secretion (ES) antigens, but its role in larval invasion is unclear. The aim of this study was to clone and express TsSPc, identify its biological and biochemical characteristics, and investigate its role on larval invasion of gut epithelium during T. spiralis infection. METHODOLOGY/PRINCIPAL FINDINGS: TsSPc has a functional domain of serine proteinase, and its tertiary structure consists of three amino acid residues (His88, Asp139 and Ser229) forming a pocket like functional domain. Recombinant TsSPc (rTsSPc) was expressed and purified. The rTsSPc has good immunogenicity. On Western blot analysis, rTsSPc was recognized by infection serum and anti-rTsSPc serum, natural TsSPc in crude and ES antigens was identified by anti-rTsSPc serum. The results of qPCR, Western blot and indirect immunofluorescence test (IIFT) showed that TsSPc was expressed at diverse stage worms, and mainly localized at cuticle, stichosome and intrauterine embryos of this nematode. The rTsSPc had enzymatic activity of native serine protease, which hydrolyzed the substrate BAEE, casein and collagen I. After site directed mutation of enzymatic active sites of TsSPc, its antigenicity did not change but the enzyme activity was fully lost. rTsSPc specifically bound to intestinal epithelium cells (IECs) and the binding sites were mainly localized in cell membrane and cytoplasm. rTsSPc accelerated larval invasion of IECs, whereas anti-rTsSPc antibodies and TsSPc-specific dsRNA obviously hindered larval invasion. CONCLUSIONS: TsSPc was a surface and secretory proteinase of the parasite, participated in larval invasion of gut epithelium, and may be considered as a candidate vaccine target molecule against Trichinella intrusion and infection.


Assuntos
Trichinella spiralis , Trichinella , Animais , Serina Proteases/genética , Trichinella spiralis/genética , Serina Endopeptidases , Epitélio
5.
PLoS One ; 17(8): e0273542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001597

RESUMO

PURPOSE: Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) proteins and leads to the maladaptive changes in myocardium. Endothelial cells (ECs) undergoing mesenchymal transition contributes to the occurrence and development of cardiac fibrosis. CD146 is an adhesion molecule highly expressed in ECs. The present study was performed to explore the role of CD146 in modulating endothelial to mesenchymal transition (EndMT). METHODS: C57BL/6 mice were subjected to subcutaneous implantation of osmotic minipump infused with angiotensin II (Ang Ⅱ). Adenovirus carrying CD146 short hairpin RNA (shRNA) or CD146 encoding sequence were infected into cultured human umbilical vein endothelial cells (HUVECs) followed by stimulation with Ang II or transforming growth factor-ß1 (TGF-ß1). Differentially expressed genes were revealed by RNA-sequencing (RNA-Seq) analysis. Gene expression was measured by quantitative real-time PCR, and protein expression and distribution were determined by Western blot and immunofluorescence staining, respectively. RESULTS: CD146 was predominantly expressed by ECs in normal mouse hearts. CD146 was upregulated in ECs but not fibroblasts and myocytes in hearts of Ang II-infused mice and in HUVECs stimulated with Ang Ⅱ. RNA-Seq analysis revealed the differentially expressed genes related to EndMT and Wnt/ß-catenin signaling pathway. CD146 knockdown and overexpression facilitated and attenuated, respectively, EndMT induced by Ang II or TGF-ß1. CD146 knockdown upregulated Wnt pathway-related genes including Wnt4, LEF1, HNF4A, FOXA1, SOX6, and CCND3, and increased the protein level and nuclear translocation of ß-catenin. CONCLUSIONS: Knockdown of CD146 exerts promotional effects on EndMT via activating Wnt/ß-catenin pathway and the upregulation of CD146 might play a protective role against EndMT and cardiac fibrosis.


Assuntos
Fator de Crescimento Transformador beta1 , beta Catenina , Animais , Antígeno CD146/genética , Antígeno CD146/imunologia , Antígeno CD146/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal , Fibrose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(2): 385-391, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178980

RESUMO

This study aimed to analyze aflatoxins content and fungal community distribution in the harvesting and processing of Platycladi Semen, and explore the key link that affects aflatoxins contamination. The related Platycladi Semen samples of different maturity periods(cone non-rupture period, early rupture, and complete rupture period) and different processing periods(before drying, during 2-d drying, during 7-d drying, before and after seed scale removal, before and after peeling, 1 d after color sorting, and 7 d after color sorting) were collected for identifying the fungal community composition on sample surface by ITS amplicon sequencing. Then the content of aflatoxins B_1, B_2, G_1 and G_2 was determined by HPLC-MS/MS. The results showed that during the harvesting of Platycladi Semen from cone non-rupture to complete rupture, aflatoxins were only detected in the seed scale and seed coat, with aflatoxin G_2 in the seed scale and aflatoxin B_1 in the seed coat. During the drying, with the prolongation of drying time, aflatoxins B_1 and G_2 were detected simultaneously in the seed scale, aflatoxin B_1 in the seed coat, and low-content aflatoxin B_1 in the seed kernel. During subsequent processing, the aflatoxin content in seed kernel during subsequent processing was slighted increased. As demonstrated by fungal detection, Aspergillus flavus was not present during the harvesting of Platycladi Semen, but present during the drying and processing. Its content in the seed coat during the drying process was relatively higher. In short, Platycladi Semen should be harvested as soon as possible after it becomes fully mature. Drying process is the key link of preventing aflatoxin contamination. It is advised to build a sunlight room or adopt similar settings, standardize the operations in other processes, and keep the surrounding environment clean to minimize aflatoxin contamination.


Assuntos
Aflatoxinas , Micobioma , Aflatoxinas/análise , Aspergillus flavus , Contaminação de Alimentos/prevenção & controle , Sêmen/química , Espectrometria de Massas em Tandem
7.
Mater Sci Eng C Mater Biol Appl ; 106: 110249, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753409

RESUMO

Biofilm-associated infections are in a high rate of recurrence and biofilms show formidable resistance to current antibiotics, making them a growing challenge in biomedical field. In this study, a biocompatible composite was developed by incorporating tannic acid (TA) and MgCl2 to bacterial cellulose (BC) for antimicrobial and anti-biofilm purposes. The morphology was investigated by scanning electron microscopy (SEM), and chemical structure were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS). In vitro release profiles of tannic acid revealed that the Mg2+ cross-links help impede the release of TA from BC matrix, while composite BC-TA lacked Mg2+ ionic cross-links, thus more TA was released from the hydrogel. The BC-TA-Mg composites also displayed strong antibacterial activity against S. aureus, E. coli and P. aeruginosa. Moreover, the composites significantly reduced biofilm formation of S. aureus and P. aeruginosa after 24 h incubation by ∼80% and ∼87%, respectively. As a consequence, the BC-TA-Mg composites are a very promising material for combating biofilm-associated infections in biomedical and public health fields.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Celulose/química , Taninos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA