Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; : e2402823, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712472

RESUMO

Perovskite oxides are proven as a striking platform for developing high-performance electrocatalysts. Nonetheless, a significant portion of them show CO2 electroreduction (CO2RR) inertness. Here a simple but effective strategy is reported to activate inert perovskite oxides (e.g., SrTiO3) for CO2RR through slight Cu2+ doping in B-sites. For the proof-of-concept catalysts of SrTi1-xCuxO3 (x = 0.025, 0.05, and 0.1), Cu2+ doping (even in trace amount, e.g., x = 0.025) can not only create active, stable CuO6 octahedra, increase electrochemical active surface area, and accelerate charge transfer, but also significantly regulate the electronic structure (e.g., up-shifted band center) to promote activation/adsorption of reaction intermediates. Benefiting from these merits, the stable SrTi1-xCuxO3 catalysts feature great improvements (at least an order of magnitude) in CO2RR activity and selectivity for high-order products (i.e., CH4 and C2+), compared to the SrTiO3 parent. This work provides a new avenue for the conversion of inert perovskite oxides into high-performance electrocatalysts toward CO2RR.

2.
Small ; : e2400615, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477702

RESUMO

Despite the intriguing potential, nano-socketed Cu/perovskite heterostructures for CO2 electroreduction (CO2 RR) are still in their infancy and rational optimization of their CO2 RR properties is lacking. Here, an effective strategy is reported to promote CO2 -to-C2+ conversion over nano-socketed Cu/perovskite heterostructures by A-site-valence-controlled oxygen vacancies. For the proof-of-concept catalysts of Cu/La0.3-x Sr0.6+x TiO3-δ (x from 0 to 0.3), their oxygen vacancy concentrations increase controllably with the decreased A-site valences (or the increased x values). In flow cells, their activity and selectivity for C2+ present positive correlations with the oxygen vacancy concentrations. Among them, the Cu/Sr0.9 TiO3-δ with most oxygen vacancies shows the optimal activity and selectivity for C2+ . And relative to the Cu/La0.3 Sr0.6 TiO3-δ with minimum oxygen vacancies, the Cu/Sr0.9 TiO3-δ exhibits marked improvements (up to 2.4 folds) in activity and selectivity for C2+ . The experiments and theoretical calculations suggest that the optimized performance can be attributed to the merits provided by oxygen vacancies, including the accelerated charge transfer, enhanced adsorption/activation of reaction species, and reduced energy barrier for C─C coupling. Moreover, when explored in a membrane-electrode assembly electrolyzer, the Cu/Sr0.9 TiO3-δ catalyst shows excellent activity, selectivity (43.9%), and stability for C2 H4 at industrial current densities, being the most effective perovskite-based catalyst for CO2 -to-C2 H4 conversion.

3.
Nat Commun ; 15(1): 1565, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378629

RESUMO

Cu-oxide-based catalysts are promising for CO2 electroreduction (CO2RR) to CH4, but suffer from inevitable reduction (to metallic Cu) and uncontrollable structural collapse. Here we report Cu-based rock-salt-ordered double perovskite oxides with superexchange-stabilized long-distance Cu sites for efficient and stable CO2-to-CH4 conversion. For the proof-of-concept catalyst of Sr2CuWO6, its corner-linked CuO6 and WO6 octahedral motifs alternate in all three crystallographic dimensions, creating sufficiently long Cu-Cu distances (at least 5.4 Å) and introducing marked superexchange interaction mainly manifested by O-anion-mediated electron transfer (from Cu to W sites). In CO2RR, the Sr2CuWO6 exhibits significant improvements (up to 14.1 folds) in activity and selectivity for CH4, together with well boosted stability, relative to a physical-mixture counterpart of CuO/WO3. Moreover, the Sr2CuWO6 is the most effective Cu-based-perovskite catalyst for CO2 methanation, achieving a remarkable selectivity of 73.1% at 400 mA cm-2 for CH4. Our experiments and theoretical calculations highlight the long Cu-Cu distances promoting *CO hydrogenation and the superexchange interaction stabilizing Cu sites as responsible for the superb performance.

4.
Mater Today Bio ; 24: 100885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169782

RESUMO

Additively manufactured biodegradable zinc (Zn) scaffolds have great potential to repair infected bone defects due to their osteogenic and antibacterial properties. However, the enhancement of antibacterial properties depends on a high concentration of dissolved Zn2+, which in return deteriorates osteogenic activity. In this study, a vancomycin (Van)-loaded polydopamine (PDA) coating was prepared on pure Zn porous scaffolds to solve the above dilemma. Compared with pure Zn scaffolds according to comprehensive in vitro tests, the PDA coating resulted in a slow degradation and inhibited the excessive release of Zn2+ at the early stage, thus improving cytocompatibility and osteogenic activity. Meanwhile, the addition of Van drug substantially suppressed the attachment and proliferation of S. aureus and E. coli bacterial. Furthermore, in vivo implantation confirmed the simultaneously improved osteogenic and antibacterial functions by using the pure Zn scaffolds with Van-loaded PDA coating. Therefore, it is promising to employ biodegradable Zn porous scaffolds with the proposed drug-loaded coating for the treatment of infected bone defects.

5.
J Colloid Interface Sci ; 659: 276-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176237

RESUMO

Lowering the operating temperatures of solid-oxide fuel cells (SOFCs) is critical, although achieving success in this endeavor has proven challenging. Herein, Bi0.15Sr0.85Co0.8Fe0.2O3-δ (BiSCF) is systematically evaluated as a carbon dioxide (CO2)-tolerant and highly active cathode for SOFCs. BiSCF, which features Bi3+ with an ionic radius similar to Ba2+, exhibits activity (e.g., 0.062 Ω cm2 at 700 °C) comparable to that of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and PrBaCo2O5+δ, while demonstrating a considerable advantage over Bi-doped cathodes. Moreover, BiSCF exhibits long-term stability over a period of 500 h, and an anode-supported cell with BiSCF achieves a power density of 912 mW cm-2 at 650 °C. The CO2-poisoned BiSCF exhibits quick reversibility or slight activation after returning to normal conditions. The exceptional CO2 tolerance of BiSCF can be attributed to its reduced basicity and high electronegativity, which effectively restrict surface Sr diffusion and hinder subsequent carbonate formation. These findings highlight the substantial potential of BiSCF for SOFCs operating below 700 °C.

6.
Adv Sci (Weinh) ; 11(5): e2307329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059810

RESUMO

The combination of bioactive Zn-2Mg alloy and additively manufactured porous scaffold is expected to achieve customizable biodegradable performance and enhanced bone regeneration. Herein, Zn-2Mg alloy scaffolds with different porosities, including 40% (G-40-2), 60% (G-60-2), and 80% (G-80-2), and different unit sizes, including 1.5 mm (G-60-1.5), 2 mm (G-60-2), and 2.5 mm (G-60-2.5), are manufactured by a triply periodic minimal surface design and a reliable laser powder bed fusion process. With the same unit size, compressive strength (CS) and elastic modulus (EM) of scaffolds substantially decrease with increasing porosities. With the same porosity, CS and EM just slightly decrease with increasing unit sizes. The weight loss after degradation increases with increasing porosities and decreasing unit sizes. In vivo tests indicate that Zn-2Mg alloy scaffolds exhibit satisfactory biocompatibility and osteogenic ability. The osteogenic ability of scaffolds is mainly determined by their physical and chemical characteristics. Scaffolds with lower porosities and smaller unit sizes show better osteogenesis due to their suitable pore size and larger surface area. The results indicate that the biodegradable performance of scaffolds can be accurately regulated on a large scale by structure design and the additively manufactured Zn-2Mg alloy scaffolds have improved osteogenic ability for treating bone defects.


Assuntos
Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Ligas , Zinco
7.
Angew Chem Int Ed Engl ; 62(44): e202305530, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37533227

RESUMO

Despite the intriguing potential shown by Sn-based perovskite oxides in CO2 electroreduction (CO2 RR), the rational optimization of their CO2 RR properties is still lacking. Here we report an effective strategy to promote CO2 -to-HCOOH conversion of Sn-based perovskite oxides by A-site-radius-controlled Sn-O bond lengths. For the proof-of-concept examples of Ba1-x Srx SnO3 , as the A-site cation average radii decrease from 1.61 to 1.44 Å, their Sn-O bonds are precisely shortened from 2.06 to 2.02 Å. Our CO2 RR measurements show that the activity and selectivity of these samples for HCOOH production exhibit volcano-type trends with the Sn-O bond lengths. Among these samples, the Ba0.5 Sr0.5 SnO3 features the optimal activity (753.6 mA ⋅ cm-2 ) and selectivity (90.9 %) for HCOOH, better than those of the reported Sn-based oxides. Such optimized CO2 RR properties could be attributed to favorable merits conferred by the precisely controlled Sn-O bond lengths, e.g., the regulated band center, modulated adsorption/activation of intermediates, and reduced energy barrier for *OCHO formation. This work brings a new avenue for rational design of advanced Sn-based perovskite oxides toward CO2 RR.

8.
Bioact Mater ; 27: 488-504, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37180641

RESUMO

Zinc (Zn) alloy porous scaffolds produced by additive manufacturing own customizable structures and biodegradable functions, having a great application potential for repairing bone defect. In this work, a hydroxyapatite (HA)/polydopamine (PDA) composite coating was constructed on the surface of Zn-1Mg porous scaffolds fabricated by laser powder bed fusion, and was loaded with a bioactive factor BMP2 and an antibacterial drug vancomycin. The microstructure, degradation behavior, biocompatibility, antibacterial performance and osteogenic activities were systematically investigated. Compared with as-built Zn-1Mg scaffolds, the rapid increase of Zn2+, which resulted to the deteriorated cell viability and osteogenic differentiation, was inhibited due to the physical barrier of the composite coating. In vitro cellular and bacterial assay indicated that the loaded BMP2 and vancomycin considerably enhanced the cytocompatibility and antibacterial performance. Significantly improved osteogenic and antibacterial functions were also observed according to in vivo implantation in the lateral femoral condyle of rats. The design, influence and mechanism of the composite coating were discussed accordingly. It was concluded that the additively manufactured Zn-1Mg porous scaffolds together with the composite coating could modulate biodegradable performance and contribute to effective promotion of bone recovery and antibacterial function.

9.
BMC Oral Health ; 23(1): 312, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217888

RESUMO

OBJECTIVES: This study was conducted to detect the overall performance of both static and dynamic occlusion in post-orthodontic patients using quantified methods, and to ascertain the correlation between the two states of occlusion. MATERIALS AND METHODS: A total of 112 consecutive patients evaluated by ABO-OGS were included in this study. Based on the pre-treatment Angle's classification of the malocclusion, samples were divided into four groups. After removing orthodontic appliances, each patients underwent the American Board of Orthodontic objective grading system (ABO-OGS) and T-Scan evaluations. All the scores were compared within these groups. Statistical evaluation included reliability tests, multivariate ANOVA, and correlation analyses (p < 0.05 was considered significant). RESULTS: The mean ABO-OGS score was satisfactory and did not differ by Angle classifications. The indices making substantial contributions to ABO-OGS were occlusal contacts, occlusal relationships, overjet, and alignment. Disocclusion time in post-orthodontic patients was longer than normal. Occlusion time, disocclusion time, and force distribution during dynamic motions were considerably influenced by static ABO-OGS measurements, especially occlusal contacts, buccolingual inclination, and alignment. CONCLUSION: Post-orthodontic cases that passed the static evaluation of clinicians and ABO-OGS may nevertheless be left with dental casts interference in dynamic motions. Both static and dynamic occlusion should be extensively evaluated before ending orthodontic treatment. Further research is needed on dynamic occlusal guidelines and standards.


Assuntos
Má Oclusão , Ortodontia , Humanos , Estados Unidos , Conselhos de Especialidade Profissional , Reprodutibilidade dos Testes , Má Oclusão/terapia , Oclusão Dentária
10.
Front Physiol ; 14: 1111857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143931

RESUMO

Background: This study attempts to detect the potential effects of local bone morphogenetic protein -2 (BMP-2) on orthodontic tooth movement and periodontal tissue remodeling. Methods: Forty adult SD rats were randomly divided into four groups: blank control group, unilateral injection of BMP-2 on the pressure side or tension side of orthodontic teeth and bilateral injection of BMP-2. Their maxillary first molar was moved by a 30 g constant force closed coil spring. 60 µL of BMP-2 with a concentration of 0.5 µg/mL was injected into each part at a time. In addition, three rats were selected as healthy control rats without any intervention. Fluorescent labeled BMP-2 was used to observe the distribution of exogenous BMP-2 in tissues. Micro-CT was used to measure the microscopic parameters of tooth displacement, trabecular bone and root absorption volume. Three different histological methods were used to observe the changes of tissue remodeling, and then the number of osteoclasts and the content of collagen fibers were calculated. Results: Compared with the blank control group, BMP-2 injection reduced the movement distance and increased the collagen fiber content and bone mass (p < 0.01). There was no significant difference in tooth movement distance, BV/TV ratio and BMD between injection sites in unilateral injection group (p > 0.05). In the case of bilateral injection of BMP-2, the osteogenesis is enhanced. Unilateral injection of BMP-2 did not promote root resorption, but double injection showed root resorption (p < 0.01). Conclusion: Our study does show that the osteogenesis of BMP-2 is dose-dependent rather than site-dependent when a certain amount of BMP-2 is applied around orthodontic teeth. Local application of BMP-2 around orthodontic teeth in an appropriate way can enhance bone mass and tooth anchorage without increasing the risk of root absorption volume. However, high levels of BMP-2 may cause aggressive root resorption. These findings are of great significance, that is, BMP-2 is an effective target for regulating orthodontic tooth movement.

11.
Adv Mater ; 34(44): e2206002, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070620

RESUMO

In situ socketing metal nanoparticles onto perovskite oxides has shown great potential in heterogeneous catalysis, but its employment in boosting ambient CO2 electroreduction (CER) is unexplored. Here, a CER catalyst of perovskite-socketed sub-3 nm Cu equipped with strong metal-support interactions (SMSIs) is constructed to promote efficient and stable CO2 -to-C2+ conversion. For such a catalyst, plentiful sub-3 nm ellipsoid Cu particles are homogeneously and epitaxially anchored on the perovskite backbones, with concomitant creation of significant SMSIs. These SMSIs are able to not only modulate electronic structure of active Cu and facilitate adsorption/activation of key intermediates, but also to strengthen perovskite-Cu adhesion and intensify resistance to structural degradation. Beneficial from these advantageous merits, when evaluated in CER, it performs comparably to or better than most reported Cu-based heteronanostructures. Relative to a physical-mixture counterpart, it features marked improvements (up to 6.2 folds) in activity and selectivity for C2+ , together with greatly boosted stability (>80 h). This work gives a new avenue to rationally design more advanced Cu-based heteronanostructures for CER.

12.
J Biomater Appl ; 36(8): 1359-1377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995142

RESUMO

Magnesium (Mg) alloy with good mechanical properties and biodegradability is considered as one of the ideal bone repair materials. However, the rapid corrosion of Mg-based metals can pose harm to the function of an implant in clinical applications. In this study, micro-arc oxidation coating was prepared on the surface of the Mg-Ca matrix, then the chitosan and mineralized collagen (nano-hydroxyapatite/collagen; nHAC) were immobilized on the surface of the MAO/Mg-Ca matrix to construct the CS-nHAC/Mg-Ca composites of different component proportions (the ratio of CS to nHAC is 2:1, 1:1, and 1:2, respectively). The corrosion resistance, osteogenic activity, and angiogenic ability were extensively investigated. The results indicated that the CS-nHAC reinforcement materials can improve the corrosion resistance of the Mg matrix significantly and promote the proliferation and adhesion of mouse embryo osteoblast precursor cells (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs). In addition, the CS-nHAC/Mg-Ca composites can not only promote the alkaline phosphatase (ALP) activity and extracellular matrix mineralization of MC3T3-E1 cells but also enhance the migration motility and vascular endothelial growth factor (VEGF) expression of HUVECs. Meanwhile, the 2CS-1nHAC/Mg-Ca composite exhibited the optimum function characteristics compared with other samples. Therefore, considering the improvement of corrosion resistance and biocompatibility, the CS-nHAC/Mg-Ca composites are expected to be a promising orthopedic implant.


Assuntos
Quitosana , Osteogênese , Ligas , Animais , Colágeno , Células Endoteliais , Magnésio , Camundongos , Fator A de Crescimento do Endotélio Vascular
13.
Angew Chem Int Ed Engl ; 61(3): e202111670, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34668284

RESUMO

We report an effective strategy to enhance CO2 electroreduction (CER) properties of Cu-based Ruddlesden-Popper (RP) perovskite oxides by engineering their A-site cation deficiencies. With La2-x CuO4-δ (L2-x C, x=0, 0.1, 0.2, and 0.3) as proof-of-concept catalysts, we demonstrate that their CER activity and selectivity (to C2+ or CH4 ) show either a volcano-type or an inverted volcano-type dependence on the x values, with the extreme point at x=0.1. Among them, at -1.4 V, the L1.9 C delivers the optimal activity (51.3 mA cm-2 ) and selectivity (41.5 %) for C2+ , comparable to or better than those of most reported Cu-based oxides, while the L1.7 C exhibits the best activity (25.1 mA cm-2 ) and selectivity (22.1 %) for CH4 . Such optimized CER properties could be ascribed to the favorable merits brought by the cation-deficiency-induced oxygen vacancies and/or CuO/RP hybrids, including the facilitated adsorption/activation of key reaction species and thus the manipulated reaction pathways.

14.
ACS Appl Mater Interfaces ; 13(51): 61098-61106, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34908396

RESUMO

La0.8Sr0.2Mn0.5Co0.5O3 (LSMC) perovskite anchored with RuOx (LSMC-Ru) is fabricated as a new bifunctional electrocatalyst, with low dosage (2.43 wt %) and high utilization of noble metal Ru. The LSMC-Ru exhibits outstanding bifunctional activity with a low potential gap of 0.72 V between the oxygen evolution reaction (OER) potential at 10 mA cm-2 and the oxygen reduction reaction (ORR) half-wave potential. The strong electronic interaction between RuOx and LSMC is confirmed by both experiments and theoretical calculations. Consequently, the electron-rich Mn centers promote ORR, while the electron-deficient Ru centers facilitate OER. A Zn-air battery using the LSMC-Ru air electrode delivers a peak power density of 159 mW cm-2 and a low charge-discharge potential gap of 0.58 V at 2 mA cm-2. The high round-trip energy efficiency of 60.6% is retained after 300 cycles. This strategy of anchoring a low dosage noble metal catalyst to perovskite can be extended to other systems of noble metal-non-noble metal composite electrocatalysts to achieve both competitive performance and low cost.

15.
ACS Appl Mater Interfaces ; 13(2): 2799-2806, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33412845

RESUMO

The electrochemical oxygen evolution reaction (OER) is of great significance for energy conversion and storage. The hybrid strategy is attracting increasing interest for the development of highly active OER electrocatalysts. Regarding the activity enhancement mechanism, electron coupling between two phases in hybrids has been widely reported, but the interfacial elemental redistribution is rarely investigated. Herein, we developed a CeO2/LaFeO3 hybrid electrocatalyst for enhanced OER activity. Interestingly, a selective interfacial La diffusion from LaFeO3 to CeO2 was demonstrated by the electron energy loss spectra and elemental mapping. This redistribution of cations triggers the change of the chemical environment of interface elements for charge compensation because of the electroneutrality principle, which results in increased oxygen vacancies and high-valent Fe species that promote the OER electrocatalysis. This mechanism might be extended to other hybrid systems and inspire the design of more efficient electrocatalysts.

16.
J Colloid Interface Sci ; 581(Pt A): 374-384, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771746

RESUMO

We applied a novel solid-liquid co-electrospinning approach to synthesize hybrid LaCoO3 perovskite nanoparticles@nitrogen-doped carbon nanofibers (LCNP@NCNF) as an effective and robust electrocatalyst for Zn-air batteries. LCNP@NCNF featured an integrated structure with well-crystallized perovskite nanoparticles uniformly distributed in micro/mesoporous NCNF. In addition, LCNP@NCNF exhibited a high specific surface area of ~183.3 m2 g-1 and a large pore volume of ~0.164 m3 g-1. The rotating-electrode measurement revealed the better intrinsic activity and more favorable stability of LCNP@NCNF in comparison with their counterparts. Moreover, Zn-air batteries employing LCNP@NCNF showed a relatively smaller discharge-charge voltage gap of ~0.95 V and longer cycling stability than the battery adopting the physically blended LCNP and NCNF. We ascribed the improved electrochemical activity to the enhanced synergistic interaction originating from the successful coupling of LCNP and NCNF.

17.
ACS Omega ; 4(13): 15373-15381, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572836

RESUMO

In this work, we proposed a feasible approach to prepare multifunctional composite films by introducing a nanoscaled filler into a polymer matrix. Specifically, thanks to isophorone diisocyanate (IPDI) acting as a coupling agent, the hydroxyl groups and carboxyl groups on the surface of graphene oxide (GO) and the hydroxyl groups on the surface of silver-coated zinc oxide nanoparticles (Ag/ZnO) are covalently grafted, forming GO-IPDI-Ag/ZnO (AGO). The prepared AGO was then introduced into the hydroxypropyl cellulose (HPC) matrix to form AGO@HPC nanocomposite films by solution blending. AGO@HPC nanocomposite films exhibited improved mechanical, anti-ultraviolet, and antibacterial properties. Specifically, a tensile test showed that the tensile strength of the prepared AGO@HPC nanocomposite film with the addition of as low as 0.5 wt % AGO was increased by about 16.2% compared with that of the pure HPC film. In addition, AGO@HPC nanocomposite films showed a strong ultraviolet resistance and could effectively inactivate both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria at a low loading of AGO, and rapid sterilization plays a crucial role in wound-healing. In vivo results show that the AGO@HPC release of Ag+ and Zn2+ stimulates the immune function to produce a large number of white blood cells and neutrophils, thereby producing the synergistic antibacterial effects and accelerated wound-healing. Therefore, our results suggest that these novel AGO@HPC nanocomposite films with improved mechanical, anti-ultraviolet, and antibacterial properties could be promising candidates for antibacterial packaging, biological wound-dressing, etc. The abuse of antibiotics has brought about serious drug-resistant bacteria, and our nanofilm antibacterial does not entail such problems. In addition, local administration reduces the possibility of changing the body's immune system and organ toxicity, which greatly increases the safety.

19.
Langmuir ; 35(13): 4481-4490, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30836753

RESUMO

The applications of graphene-based adsorbents were limited because of their complicated manufacturing technology and hi cost, thus it is very important to prepare new inexpensive and easily manufactured graphene-based adsorbents. Herein, novel GCP hydrogels with different graphene oxide (GO), chitosan (CS), and poly(vinyl alcohol) (PVA) ratios were facilely prepared through a method of freeze-thaw physical cross-linking, which was green and low-cost, and the structural characterization and adsorptive property of the optimum GCP1:2:4 hydrogel toward Cd2+ and Ni2+ in wastewater was evaluated. It was found that the GCP1:2:4 hydrogel had good mechanical strength and a special 3D interconnection porous structure. The isotherms of adsorption used the Langmuir model, and the kinetics of adsorption following the pseudo-second-order model were confirmed. Moreover, the adsorption property with respect to Cd2+ and Ni2+ in wastewater has been largely effected by the pH and was less influenced by the ionic strength and humic acid, and the GCP1:2:4 hydrogel possessed excellent adsorptive and recyclable properties. These results demonstrated that the GCP1:2:4 hydrogel could serve as a desirable adsorbent to get rid of heavy metal ions in sewage.

20.
RSC Adv ; 8(60): 34232-34240, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548647

RESUMO

Solid composite electrolytes have gained increased attention, thanks to the improved safety, the prolonged service life, and the effective suppression on the lithium dendrites. However, a low ionic conductivity (<10-5 S cm-1) of solid composite electrolytes at room temperature needs to be greatly enhanced. In this work, we employ natural halloysite nanotubes (HNTs) and poly(vinylidene fluoride) (PVDF) to fabricate composite polymer electrolytes (CPEs). CPE-5 (HNTs 5 wt%) shows an ionic conductivity of ∼3.5 × 10-4 S cm-1, which is ∼10 times higher than the CPE-0 (without the addition of HNTs) at 30 °C. The greatly increased ionic conductivity is attributed to the negatively-charged outer surface and a high specific surface area of HNTs, which facilitates the migration of Li+ in PVDF. To make a further illustration, a solid-state lithium-ion battery with CPE-5 electrolyte, LiMn2O4 cathode and Li metal anode was fabricated. An initial discharge capacity of ∼71.9 mA h g-1 at 30 °C in 1C is obtained, and after 250 cycles, the capacity of 73.5 mA h g-1 is still maintained. This study suggests that a composite polymer electrolyte with high conductivity can be realized by introducing natural HNTs, and can be potentially applied in solid-state lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA