Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell Prolif ; : e13703, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946232

RESUMO

Immunotherapy has brought significant advancements in the treatment of lung adenocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this study, we investigated tumour cell heterogeneity using extensive single-cell data and explored the impact of different tumour cell cluster abundances on immunotherapy in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant correlation between CKS1B+ tumour cell abundance and treatment response, as well as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell cluster, we employed machine learning algorithms to establish a prognostic and immunotherapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed 144 previously published signatures in predicting LUAD prognosis. Importantly, PIS reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy responses. Immunohistochemistry validated lower expression of immune markers in the low-PIS group, while in vitro experiments underscored the role of the key gene PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facilitating the selection of suitable LUAD patients for immunotherapy, ultimately improving prognosis and guiding clinical decisions.

2.
J Cell Mol Med ; 28(13): e18516, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958577

RESUMO

The progression of lung adenocarcinoma (LUAD) from atypical adenomatous hyperplasia (AAH) to invasive adenocarcinoma (IAC) involves a complex evolution of tumour cell clusters, the mechanisms of which remain largely unknown. By integrating single-cell datasets and using inferCNV, we identified and analysed tumour cell clusters to explore their heterogeneity and changes in abundance throughout LUAD progression. We applied gene set variation analysis (GSVA), pseudotime analysis, scMetabolism, and Cytotrace scores to study biological functions, metabolic profiles and stemness traits. A predictive model for prognosis, based on key cluster marker genes, was developed using CoxBoost and plsRcox (CPM), and validated across multiple cohorts for its prognostic prediction capabilities, tumour microenvironment characterization, mutation landscape and immunotherapy response. We identified nine distinct tumour cell clusters, with Cluster 6 indicating an early developmental stage, high stemness and proliferative potential. The abundance of Clusters 0 and 6 increased from AAH to IAC, correlating with prognosis. The CPM model effectively distinguished prognosis in immunotherapy cohorts and predicted genomic alterations, chemotherapy drug sensitivity, and immunotherapy responsiveness. Key gene S100A16 in the CPM model was validated as an oncogene, enhancing LUAD cell proliferation, invasion and migration. The CPM model emerges as a novel biomarker for predicting prognosis and immunotherapy response in LUAD patients, with S100A16 identified as a potential therapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Progressão da Doença , Neoplasias Pulmonares , Aprendizado de Máquina , Análise de Célula Única , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Perfilação da Expressão Gênica
3.
Environ Sci Technol ; 58(24): 10675-10684, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843196

RESUMO

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.


Assuntos
Aerossóis , Compostos de Epóxi/química , Concentração de Íons de Hidrogênio , Equilíbrio Ácido-Base
4.
ACS EST Air ; 1(6): 511-524, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38884193

RESUMO

Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.

5.
Cancer Cell ; 42(7): 1258-1267.e2, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38906157

RESUMO

We conducted a proof-of-concept, phase 2 trial to assess neoadjuvant SHR-1701 with or without chemotherapy, followed by surgery or radiotherapy, and then consolidation SHR-1701 in unresectable stage III non-small-cell lung cancer (NSCLC). In the primary cohort of patients receiving neoadjuvant combination therapy (n = 97), both primary endpoints were met, with a post-induction objective response rate of 58% (95% confidence interval [CI] 47-68) and an 18-month event-free survival (EFS) rate of 56.6% (95% CI 45.2-66.5). Overall, 27 (25%) patients underwent surgery; all achieved R0 resection. Among them, 12 (44%) major pathological responses and seven (26%) pathological complete responses were recorded. The 18-month EFS rate was 74.1% (95% CI 53.2-86.7) in surgical patients and 57.3% (43.0-69.3) in radiotherapy-treated patients. Neoadjuvant SHR-1701 with chemotherapy, followed by surgery or radiotherapy, showed promising efficacy with a tolerable safety profile in unresectable stage III NSCLC. Surgical conversion was feasible in a notable proportion of patients and associated with better survival outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Neoadjuvante , Estadiamento de Neoplasias , Estudo de Prova de Conceito , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidade , Feminino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Masculino , Idoso , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Anticorpos Monoclonais , Proteínas Recombinantes de Fusão
6.
J Cell Mol Med ; 28(11): e18408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837585

RESUMO

We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.


Assuntos
Adenocarcinoma de Pulmão , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genômica , Neoplasias Pulmonares , Análise de Célula Única , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Prognóstico , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Genômica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Redes Reguladoras de Genes , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Invasividade Neoplásica
7.
Redox Biol ; 73: 103199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810423

RESUMO

Intracellular redox homeostasis in the airway epithelium is closely regulated through adaptive signaling and metabolic pathways. However, inhalational exposure to xenobiotic stressors such as secondary organic aerosols (SOA) can alter intracellular redox homeostasis. Isoprene hydroxy hydroperoxide (ISOPOOH), a ubiquitous volatile organic compound derived from the atmospheric photooxidation of biogenic isoprene, is a major contributor to SOA. We have previously demonstrated that exposure of human airway epithelial cells (HAEC) to ISOPOOH induces oxidative stress through multiple mechanisms including lipid peroxidation, glutathione oxidation, and alterations of glycolytic metabolism. Using dimedone-based reagents and copper catalyzed azo-alkynyl cycloaddition to tag intracellular protein thiol oxidation, we demonstrate that exposure of HAEC to micromolar levels of ISOPOOH induces reversible oxidation of cysteinyl thiols in multiple intracellular proteins, including GAPDH, that was accompanied by a dose-dependent loss of GAPDH enzymatic activity. These results demonstrate that ISOPOOH induces an oxidative modification of intracellular proteins that results in loss of GAPDH activity, which ultimately impacts the dynamic regulation of the intracellular redox homeostatic landscape in HAEC.


Assuntos
Células Epiteliais , Oxirredução , Estresse Oxidativo , Compostos de Sulfidrila , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hemiterpenos/metabolismo , Peróxidos/metabolismo
8.
Sci Rep ; 14(1): 9983, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693143

RESUMO

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Assuntos
Doxorrubicina , Hidrogéis , Estruturas Metalorgânicas , Metacrilatos , Nanopartículas , Cicatrização , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Cicatrização/efeitos dos fármacos , Nanopartículas/química , Hidrogéis/química , Ratos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Gelatina/química , Cério/química , Cério/farmacologia , Zeolitas/química , Zeolitas/farmacologia , Linhagem Celular Tumoral , Masculino , Imidazóis/química , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Ratos Sprague-Dawley
9.
J Cell Mol Med ; 28(8): e18284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597415

RESUMO

Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer, yet the contribution of purine metabolism (PM) to its pathogenesis remains poorly elucidated. PM, a critical component of intracellular nucleotide synthesis and energy metabolism, is hypothesized to exert a significant influence on LUAD development. Herein, we employed single-cell analysis to investigate the role of PM within the tumour microenvironment (TME) of LUAD. PM scoring (PMS) across distinct cell types was determined using AUCell, UCell, singscore and AddModuleScore algorithms. Subsequently, we explored communication networks among cells within high- and low-PMS groups, establishing a robust PM-associated signature (PAS) utilizing a comprehensive dataset comprising LUAD samples from TCGA and five GEO datasets. Our findings revealed that the high-PMS group exhibited intensified cell interactions, while the PAS, constructed using PM-related genes, demonstrated precise prognostic predictive capability. Notably, analysis across the TCGA dataset and five GEO datasets indicated that low-PAS patients exhibited a superior prognosis. Furthermore, the low-PAS group displayed increased immune cell infiltration and elevated CD8A expression, coupled with reduced PD-L1 expression. Moreover, data from eight publicly available immunotherapy cohorts suggested enhanced immunotherapy outcomes in the low-PAS group. These results underscore a close association between PAS and tumour immunity, offering predictive insights into genomic alterations, chemotherapy drug sensitivity and immunotherapy responses in LUAD. The newly established PAS holds promise as a valuable tool for selecting LUAD populations likely to benefit from future clinical stratification efforts.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Análise de Célula Única , Imunoterapia , Purinas , Microambiente Tumoral/genética
10.
Environ Toxicol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622884

RESUMO

Lung adenocarcinoma (LUAD) generally presents as an immunosuppressive microenvironment. The characteristics of cell-to-cell communication in the LUAD microenvironment has been unclear. In this study, the LUAD bulk RNA-seq data and single-cell RNA-seq data were retrieved from public dataset. Differential expression genes (DEGs) between LUAD tumor and adjacent non-tumor tissues were calculated by limma algorithm, and then detected by PPI, KEGG, and GO analysis. Cell-cell interactions were explored using the single-cell RNA-seq data. Finally, the first 15 CytoHubba genes were used to establish related pathways and these pathways were used to characterize the immune-related ligands and their receptors in LUAD. Our analyses showed that monocytes or macrophages interact with tissue stem cells and NK cells via SPP1 signaling pathway and tissue stem cells interact with T and B cells via CXCL signaling pathway in different states. Hub genes of SPP1 participated in SPP1 signaling pathway, which was negatively correlated with CD4+ T cell and CD8+ T cell. The expression of SPP1 in LUAD tumor tissues was negatively correlated with the prognosis. While CXCL12 participated in CXCL signaling pathway, which was positively correlated with CD4+ T cell and CD8+ T cell. The role of CXCL12 in LUAD tumor tissues exhibits an opposite effect to that of SPP1. This study reveals that tumor-associated monocytes or macrophages may affect tumor progression. Moreover, the SPP1 and CXCL12 may be the critic genes of cell-to-cell communication in LUAD, and targeting these pathways may provide a new molecular mechanism for the treatment of LUAD.

11.
J Cell Mol Med ; 28(8): e18289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613346

RESUMO

Integrin alpha L (ITGAL), a member of the integrin family, is associated with carcinogenesis and immune regulation. However, the biological functions of ITGAL in lung adenocarcinoma (LUAD) remain poorly understood. In this study, we utilized the TCGA dataset to analyse ITGAL mRNA expression in LUAD and examined its correlation with clinical prognosis. Three-dimensional (3D) Matrigel culture, 5-bromodeoxyuridine (BrdU) ELISA, wound-healing migration and cell adherence assays were used to demonstrate the potential role of ITGAL in LUAD progression. Additionally, we analysed single-cell sequencing data of LUAD to determine the expression and biological function of ITGAL. Our research revealed that the expression of ITGAL in LUAD samples is an independent predictor of prognosis. Patients with high expression of ITGAL had significantly better overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS) compared to the low-expression group. Meanwhile, the expression of ITGAL suppressed malignant progression in LUAD cells. Functional enrichment analyses showed that ITGAL was significantly correlated with cell immune response and immune checkpoint, consistent with the analysis of single-cell sequencing in paired samples of normal and tumour. Furthermore, we confirmed that ITGAL expression affect the tumour microenvironment (TME) through regulation of the expression of cytokines in NK cells of LUAD. In summary, ITGAL is a prognostic biomarker for LUAD patients, and it repressed malignant progression in LUAD cells. Moreover, ITGAL expression also enhanced the effect of immunotherapy and may be an important target in LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Carcinogênese , Citocinas , Integrinas , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
12.
Anticancer Drugs ; 35(6): 483-491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502867

RESUMO

This study aims to investigate the role and mechanism of ubiquitin-specific protease 3 (USP3) in cisplatin (DDP) in non-small cell lung cancer (NSCLC). USP3 expression in NSCLC cells was detected using reverse transcription quantitative PCR and Western blot. DDP-resistant cells were constructed and cell counting kit-8 assay determined the IC 50 of cells to DDP. USP3 expression was silenced in DDP-resistant cells, followed by detection of cell proliferation by clone formation assay, iron ion contents, ROS, MDA, and GSH levels by kits, GPX4 and ACSL4 protein expressions by Western blot. The binding between USP3 and ACOT7 was analyzed using Co-IP, and the ubiquitination level of ACOT7 was measured. USP3 and ACOT7 were highly expressed in NSCLC cells and further increased in drug-resistant cells. USP3 silencing reduced the IC 50 of cells to DDP and diminished the number of cell clones. Moreover, USP3 silencing suppressed GSH and GPX4 levels, upregulated iron ion contents, ROS, MDA, and ACSL4 levels, and facilitated ferroptosis. Mechanistically, USP3 upregulated ACOT7 protein expression through deubiquitination. ACOT7 overexpression alleviated the promoting effect of USP7 silencing on ferroptosis in NSCLC cells and enhanced DDP resistance. To conclude, USP3 upregulated ACOT7 protein expression through deubiquitination, thereby repressing ferroptosis in NSCLC cells and enhancing DDP resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Coenzima A Ligases , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Ferroptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
13.
Environ Toxicol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488684

RESUMO

BACKGROUND: The hypothesized link between low-density lipoprotein (LDL) and oncogenesis has garnered significant interest, yet its explicit impact on lung adenocarcinoma (LUAD) remains to be elucidated. This investigation aims to demystify the function of LDL-related genes (LRGs) within LUAD, endeavoring to shed light on the complex interplay between LDL and carcinogenesis. METHODS: Leveraging single-cell transcriptomics, we examined the role of LRGs within the tumor microenvironment (TME). The expression patterns of LRGs across diverse cellular phenotypes were delineated using an array of computational methodologies, including AUCell, UCell, singscore, ssGSEA, and AddModuleScore. CellChat facilitated the exploration of distinct cellular interactions within LDL_low and LDL_high groups. The findmarker utility, coupled with Pearson correlation analysis, facilitated the identification of pivotal genes correlated with LDL indices. An integrative approach to transcriptomic data analysis was adopted, utilizing a machine learning framework to devise an LDL-associated signature (LAS). This enabled the delineation of genomic disparities, pathway enrichments, immune cell dynamics, and pharmacological sensitivities between LAS stratifications. RESULTS: Enhanced cellular crosstalk was observed in the LDL_high group, with the CoxBoost+Ridge algorithm achieving the apex c-index for LAS formulation. Benchmarking against 144 extant LUAD models underscored the superior prognostic acuity of LAS. Elevated LAS indices were synonymous with adverse outcomes, diminished immune surveillance, and an upsurge in pathways conducive to neoplastic proliferation. Notably, a pronounced susceptibility to paclitaxel and gemcitabine was discerned within the high-LAS cohort, delineating prospective therapeutic corridors. CONCLUSION: This study elucidates the significance of LRGs within the TME and introduces an LAS for prognostication in LUAD patients. Our findings accentuate putative therapeutic targets and elucidate the clinical ramifications of LAS deployment.

14.
Environ Toxicol ; 39(5): 2803-2816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287713

RESUMO

BACKGROUND: The relationship between DNA damage repair (DDR) and cancer is intricately intertwined; however, its specific role in esophageal squamous cell carcinoma (ESCC) remains enigmatic. METHODS: Employing single-cell analysis, we delineated the functionality of DDR-related genes within the tumor microenvironment (TME). A diverse array of scoring mechanisms, including AUCell, UCell, singscore, ssgsea, and AddModuleScore, were harnessed to scrutinize the activity of DDR-related genes across different cell types. Differential pathway alterations between high-and low-DDR activity cell clusters were compared. Furthermore, leveraging multiple RNA-seq datasets, we constructed a robust DDR-associated signature (DAS), and through integrative multiomics analysis, we explored differences in prognosis, pathways, mutational landscapes, and immunotherapy predictions among distinct DAS groups. RESULTS: Notably, high-DDR activity cell subpopulations exhibited markedly enhanced cellular communication. The DAS demonstrated uniformity across multiple datasets. The low-DAS group exhibited improved prognoses, accompanied by heightened immune infiltration and elevated immune checkpoint expression. SubMap analysis of multiple immunotherapy datasets suggested that low-DAS group may experience enhanced immunotherapy responses. The "oncopredict" R package analyzed and screened sensitive drugs for different DAS groups. CONCLUSION: Through the integration of single-cell and bulk RNA-seq data, we have developed a DAS associated with prognosis and immunotherapy response. This signature holds promise for the future stratification and personalized treatment of ESCC patients in clinical settings.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Reparo do DNA/genética , Dano ao DNA , Microambiente Tumoral/genética
15.
Discov Med ; 35(179): 965-974, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058061

RESUMO

BACKGROUND: Lung isolation and separation is still controversial in thoracic surgery. Preferences of the surgeon can drive the decision to use single- vs. double-lumen endotracheal intubation. We aimed to compare complications and quality of life (QOL) after radical lung cancer resection with a single-lumen tube (ST) and a double-lumen tube (DT) for patients with non-small cell lung cancer (NSCLC). METHODS: A total of 309 patients who underwent radical lung cancer resection with video-assisted thoracoscopy-lobectomy were subsequently included in the study. Based on the type of endotracheal intubation tube used during surgery, we divided all the patients into a single-lumen tube group (ST-G) and double-lumen tube group (DT-G). Then, we applied propensity score matching (1:1) to balance the baseline characteristics between the two groups. The Analysis of Variance (ANOVA) of two-factor repeated measures data was performed to compare postoperative complications at three and six months after surgery and postsurgical QOL at baseline at one month, three months, six months, and twelve months. RESULTS: Within three months after surgery, patients in the ST-G presented less cough symptoms in Lung Cancer Symptom Scale (LCSS), lower cough symptom scores (CSS) (one month and three months, p < 0.05) and better performance of Leicester Cough Questionnaire (LCQ) scores in physical part (one month, three months and six months, p < 0.05) with better overall QOL (one month and three months, p < 0.05) than those in the DT-G. CONCLUSIONS: Patients with STs displayed less postoperative cough symptoms and higher overall QOL than those with DTs. Although DT is the gold standard for thoracic surgeries, we suggest that postoperative cough symptoms should be given sufficient attention by surgeons.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Cirurgia Torácica Vídeoassistida/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Intubação Intratraqueal/efeitos adversos , Tosse/complicações
16.
BMC Surg ; 23(1): 353, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980480

RESUMO

BACKGROUND: This study aimed to compare the postoperative quality of life (PQOL) between non-small-cell lung cancer (NSCLC) patients who underwent video-assisted thoracoscopic sublobar resection (subsegment, segment, or wedge) and lobectomy. Meanwhile, we developed a PQOL scale for patients with NSCLC after optimization. METHODS: Developing and evaluating the postoperative quality-of-life scale of non-small-cell lung cancer (NSCLC-PQOL) followed by the international principles for developing quality-of-life scale. Therefore, we used the NSCLC-PQOL scale to evaluate the PQOL of patients who underwent different surgeries. RESULTS: The overall PQOL of patients who underwent video-assisted thoracoscopic lobectomy and sublobar resection gradually worsened from discharge to 3 months postoperatively and progressively improved from three to 6 months postoperatively. And the sublobar resection group showed better PQOL in chest tightness, breath shortness, breathlessness, cough and expectoration than the lobectomy group, and the differences were statistically significant (P < 0.05). The final version of the NSCLC-PQOL contained three dimensions: "signs-symptoms", "psychological and psychiatric", and "social-life" dimensions. CONCLUSIONS: The sublobar resection group showed better PQOL in "chest tightness", "breath shortness", "breathlessness", "cough", and "expectoration" than the lobectomy group. Twenty-two items formed a well-behaved PQOL scale after being validated satisfactorily. The scale was a suitable rating tool for evaluating the NSCLC-PQOL of patients. TRIAL REGISTRATION: As this study was a retrospective study and not a clinical trial, we did not register this study in the Chinese Clinical Trial Registry.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Qualidade de Vida , Pneumonectomia/métodos , Estadiamento de Neoplasias
17.
BMJ Open ; 13(10): e075242, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898488

RESUMO

INTRODUCTION: Radical surgery including mediastinal lymph node dissection is the standard treatment for early-stage non-small cell lung cancer (NSCLC). About 50% lung nodules are pure ground glass or part-solid nodules, which are predominantly clinical stage IA NSCLC. Non-solid nodules rarely develop mediastinal lymph node metastasis. METHOD AND ANALYSIS: A phase III study was started in China to evaluate the non-inferiority in overall survival of spared mediastinal lymph node dissection compared with mediastinal lymph node dissection in stage IA NSCLC. A total of 1362 patients will be enrolled from 4 institutions in 2-3 years. The second endpoints are relapse-free survival and perioperative data, including duration of hospitalisation, duration of chest tube placement, operation time, blood loss. ETHICS AND DISSEMINATION: This protocol has been reviewed and approved by the Clinical Research Review Board of Tianjin Medical University Cancer Institute and Hospital. The findings will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT04631770.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Excisão de Linfonodo/métodos , Linfonodos/cirurgia , Linfonodos/patologia , Estudos Multicêntricos como Assunto , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Retrospectivos , Ensaios Clínicos Fase III como Assunto
18.
Chem Res Toxicol ; 36(11): 1814-1825, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37906555

RESUMO

Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).


Assuntos
Butadienos , Estresse Oxidativo , Humanos , Idoso , Espécies Reativas de Oxigênio , Oxirredução , Butadienos/toxicidade
19.
Cancer Med ; 12(18): 18755-18766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37676092

RESUMO

BACKGROUND: Spread through air space (STAS) has been identified as a pathological pattern associated with lung cancer progression. Patients with STAS were related to a worse prognosis compared with patients without STAS. The objective of this study was to establish a radiomics model capable of forecasting STAS before surgery, which can assist surgeons in selecting the most appropriate operation type for patients with STAS. METHOD: There were 537 eligible patients retrospectively included in this study. ROI segmentation was performed manually on all CT images to identify the region of interest. From each segmented lesion, a total of 1688 features were extracted. The tumor size, maximum tumor diameters, and tumor type were also recorded. Using Spearman's correlation coefficient to calculate the correlation and redundancy of elements, and redundant features less than 0.80 were removed. In order to reduce the level of overfitting and avoid statistical biases, a dimension reduction process of the dataset was conducted to decrease the number of features. Finally, a radiomics model included 44 features was established to predict STAS. To evaluate the performance of the model, the receiver operating characteristic (ROC) curve was used, and the area under the curve (AUC) was calculated, and the accuracy of the model was verified by 10-fold cross-validation. RESULTS: The incidence of STAS was 38.2% (205/537). The tumor type, maximum tumor diameters, and consolidation tumor ratio were significantly different between STAS group and non-STAS group. The training group included 430 patients, while the test group was consisted with 107. The training group achieved an AUC of 0.825 (sensitivity, 0.875; specificity, 0.621; and accuracy, 0.749) and the test group had an AUC of 0.802 (sensitivity, 0.797; specificity,0.688; and accuracy, 0.748). The 10-fold cross-validation had an AUC of 0.834. CONCLUSION: CT-based radiomic model can predict STAS effectively, which is of great importance to guide the selection of operation types before surgery.

20.
Front Pharmacol ; 14: 1236655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745054

RESUMO

Introduction: Lung adenocarcinoma is a common cause of mortality in patients with cancer. Recent studies have indicated that copper-related cell death may not occur in the same way as previously described. Long non-coding RNAs (lncRNAs) play a key role in the occurrence and development of tumors; however, the relationship between cuproptosis and lncRNAs in tumorigenesis and lung adenocarcinoma (LUAD) treatment has not been well established. Our study aimed to construct a model to analyze the prognosis of lung adenocarcinoma in patients using a carcinogenesis-related lncRNA (CR) signature. Methods: The transcriptional profiles of 507 samples from The Cancer Genome Atlas were assessed. Cox regression and co-expression analyses, and the least absolute shrinkage and selection operator (LASSO) were used to filter the CR and develop the model. The expression status of the six prognostic CRs was used to classify all samples into high- and low-risk groups. The overall disease-free survival rate was compared between the two groups. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to identify the pathways and mechanisms involved in this model. Subsequently, immunotherapy response, sensitivity, and correlation analyses for several anti-tumor medications were performed. In vitro experiments, including qPCR, were conducted in nine lung adenocarcinoma cell lines and 16 pairs of lung adenocarcinoma and para-carcinoma tissues. Results: After confirmation using the ROC curve, patients in the low-risk category benefited from both overall and disease-free survival. Gene Ontology analysis highlighted cell movement in the model. In the in vitro experiments, qPCR results showed the expression levels of six CRs in 16 pairs of carcinoma and para-carcinoma tissues, which were in accordance with the results of the model. AL138778.1 is a protective factor that can weaken the invasion and migration of A549 cells, and AL360270.1 is a hazardous factor that promotes the invasion and migration of A549 cells. According to this model, targeted treatments such as axitinib, gefitinib, linsitinib, pazopanib, and sorafenib may be more appropriate for low-risk patients. Conclusion: Six CR profiles (AL360270.1, AL138778.1, CDKN2A-DT, AP003778.1, LINC02718, and AC034102.8) with predictive values may be used to evaluate the prognosis of patients with lung adenocarcinoma undergoing therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA