Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 37(4): 1492-8, 2016 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-27548974

RESUMO

This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.


Assuntos
Carbono/química , Desnitrificação , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Esgotos/química , Purificação da Água/métodos , Amônia/química , Reatores Biológicos , Águas Residuárias/química
2.
Huan Jing Ke Xue ; 37(3): 1147-55, 2016 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-27337912

RESUMO

Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.


Assuntos
Arsênio/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Solo/química
3.
Huan Jing Ke Xue ; 37(6): 2393-2400, 2016 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964912

RESUMO

Visible light responsive heterojunctions of graphitic carbon nitride (g-C3N4) and Bi2S3 were successfully designed and constructed by a simple solvothermal process. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectroscopy (DRS). Under visible light irradiation, the as-prepared g-C3N4/Bi2S3 photocatalysts exhibited highly enhanced photochemical efficiency in the degradation of methyl orange (MO) compared with pure g-C3N4 and Bi2S3. On the basis of the calculated energy bands, the excellent enhancement was attributed to the efficient separation of photoinduced electron-hole pairs. In addition, a detailed degradation pathway of MO degradation by g-C3N4/Bi2S3 composites was proposed to further elucidate the inner photodegradation mechanism. This research may provide a cost-effective and easy-scaling up approach to develop visible-light-driven photocatalysts, which could be applied in wastewater treatment.


Assuntos
Compostos Azo/química , Luz , Fotólise , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA