Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
R Soc Open Sci ; 11(4): 231580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601033

RESUMO

Molecular clock estimates suggest the origin of Annelida dates back to the Ediacaran period, which is in discordance with the first appearance of this taxon in the early Cambrian, as evidenced by the fossil records of stem-group and basally branching crown-group annelids. Using new material from the early Cambrian Guanshan biota (Cambrian Series 2, Stage 4), we re-interpret Gaoloufangchaeta bifurcus Zhao, Li & Selden, 2023, as the earliest known errantian annelid. Gaoloufangchaeta has a prominent anterior end bearing three pairs of putatively sensory appendages and a pair of anterior eyes; a muscular eversible pharynx with papillae is identified. The presence of enlarged parapodia with acicula-like structures and long capillary chaetae suggests a pelagic lifestyle for this taxon. Our phylogenetic analyses recover Gaoloufangchaeta within the Phyllodocida (Pleistoannelida, Errantia), extending the origin of Errantia back to the early Cambrian. Our data are in line with the hypothesis that Annelida diverged before the Cambrian and indicate both morphological and ecological diversification of annelids in the early Cambrian.

2.
Eur J Pharmacol ; 963: 176188, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951490

RESUMO

A triterpenoid isolated from the plant Hedera helix, hederagenin was discovered to have anti-cancer, anti-inflammatory, anti-depressant and anti-fibrosis properties both in vivo and in vitro. In this study, the relationship between mitochondrial fission and hederagenin-induced apoptosis in ovarian cancer (OC) was investigated and the underlying mechanisms were deciphered. Hederagenin's cytotoxicity on OC cells was analyzed using colony formation and CCK-8 assays. The effect of hederagenin on OC cells was also verified by a mouse xenograft tumor model. Flow cytometric analysis was conducted to examine hederagenin's effects on mitochondrial membrane potential, apoptosis, and cell cycle OC cells. MitoTracker Red (CMXRos) staining was performed to observe the mitochondrial morphology. The protein levels of Bak, Bcl-2, Caspase 3, Caspase 9, Cyclin D1 and Bax were measured by Western blot. This study found that hederagenin could suppress the in vivo and in vitro SKOV3 and A2780 cell proliferation in an effective manner. Besides, hederagenin altered the mitochondrial membrane potential, induced S-phase and G0/G1-phase arrest, mitochondrial morphology changes, and apoptosis in OC cells. Additionally, our findings further demonstrated that hederagenin changed the mitochondrial morphology by suppressing dynamin-related protein 1 (Drp1), a crucial mitochondrial division factor. Moreover, Drp1 overexpression could reverse hederagenin-induced apoptosis, whereas the Drp1 knockdown had the opposite effect. Furthermore, hederagenin may trigger BAX mitochondrial translocation and apoptosis in OC cells. These results provided a novel perspective on the relationship between the modulation of mitochondrial morphology and the suppression of ovarian cancer by hederagenin.


Assuntos
Dinâmica Mitocondrial , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Proteína X Associada a bcl-2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Dinaminas , Apoptose , Proteínas Mitocondriais/metabolismo
4.
ACS Biomater Sci Eng ; 9(11): 6481-6489, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37779379

RESUMO

Living materials that combine living cells and synthetic matrix materials have become promising research fields in recent years. While multicellular systems present exclusive benefits in developing living materials over single-cell systems, creating artificial multicellular systems can be challenging due to the difficulty in controlling the multicellular assemblies and the complexity of cell-to-cell interactions. Here, we propose a coculture platform capable of isolating and controlling the spatial distribution of algal-bacterial consortia, which can be utilized to construct photosynthetic living fibers. Through coaxial extrusion-based 3D printing, hydrogel fibers containing bacteria or algae can be deposited into designated structures and further processed into materials with precise geometries. In addition, the photosynthetic living fibers demonstrate a significant synergistic catalytic effect resulting from the immobilization of both bacteria and algae, which effectively optimizes sewage treatment for bioremediation purposes. The integration of microbial consortia and 3D printing yields functional living materials with promising applications in biocatalysis, biosensing, and biomedicine. Our approach provides an optimized solution for constructing efficient multicellular systems and opens a new avenue for the development of advanced materials.


Assuntos
Bactérias , Hidrogéis , Hidrogéis/química , Impressão Tridimensional
5.
Foods ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761058

RESUMO

Chitooligosaccharides (COS), a high-value chitosan derivative, have many applications in food, pharmaceuticals, cosmetics and agriculture owing to their unique biological activities. Chitosanase, which catalyzes the hydrolysis of chitosan, can cleave ß-1,4 linkages to produce COS. In this study, a chitosanase-producing Bacillus paramycoides BP-N07 was isolated from marine mud samples. The chitosanase enzyme (BpCSN) activity was 2648.66 ± 20.45 U/mL at 52 h and was able to effectively degrade chitosan. The molecular weight of purified BpCSN was approximately 37 kDa. The yield and enzyme activity of BpCSN were 0.41 mg/mL and 8133.17 ± 47.83 U/mg, respectively. The optimum temperature and pH of BpCSN were 50 °C and 6.0, respectively. The results of the high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) of chitosan treated with BpCSN for 3 h showed that it is an endo-chitosanase, and the main degradation products were chitobiose, chitotriose and chitotetraose. BpCSN was used for the preparation of oligosaccharides: 1.0 mg enzyme converted 10.0 g chitosan with 2% acetic acid into oligosaccharides in 3 h at 50 °C. In summary, this paper reports that BpCSN has wide adaptability to temperature and pH and high activity for hydrolyzing chitosan substrates. Thus, BpCSN is a chitosan decomposer that can be used for producing chitooligosaccharides industrially.

6.
Mol Cell ; 83(18): 3377-3392.e6, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738965

RESUMO

The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.


Assuntos
Algoritmos , Proteoma , Proteoma/genética , Núcleo Celular , Análise por Conglomerados , Ubiquitina-Proteína Ligases/genética
7.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569945

RESUMO

Cold spray (CS) is an emerging technology for repairing and 3D additive manufacturing of a variety of metallic components using deformable metal powders. In CS deposition, gas type, gas pressure, gas temperature, and powder feed rate are the four key process parameters that have been intensively studied. Spray angle, spray gun traverse speed, and standoff distance (SoD) are the other three process parameters that have been less investigated but are also important, especially when depositing on uneven substrates or building up 3D freeform structures. Herein, the effects of spray angle, traverse speed, and SoD during CS deposition have been investigated holistically on a single material system (i.e., Al2219 powders on Al2219-T6 substrate). The coatings' mass gain, thickness, porosity, and residual stress have been characterized, and the results show that spray angle and traverse speed exercise much more effects than SoD in determining coatings' buildup. Finite element method (FEM) modeling and computational fluid dynamic (CFD) simulation have been carried out to understand the effects of these three parameters for implementing CS as repairing and additive manufacturing using aluminum-based alloy powders.

8.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507137

RESUMO

Non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. The role of hPCL3 isoforms, hPCL3S and hPCL3L, remains ambiguous. This study examines the functional implications of these isoforms in NSCLC, using lung cancer cell lines A549 and NCI-H226c for in vivo and in vitro analyses. The results indicate that elevated expression of both hPCL3S and hPCL3L correlates with diminished overall survival, although only hPCL3S levels are augmented in clinical NSCLC specimens. Inhibition of either isoform leads to reduced cell proliferation, invasion, and migration, with hPCL3S knockdown displaying superior effectiveness. Moreover, the findings reveal that TRIM21 interacts with both isoforms and mediates hPCL3S degradation through K48-linked ubiquitination in NSCLC cells. Conversely, TRIM21 does not facilitate hPCL3L degradation, despite forming K63-linked polyubiquitin chains. These observations highlight the divergent roles of hPCL3 isoforms in NSCLC and underscore the potential therapeutic value of targeting hPCL3S.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitinação
11.
J Colloid Interface Sci ; 642: 439-446, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023515

RESUMO

Due to the poor bifunctional electrocatalytic performances of electrocatalysts in zinc-air battery, herein, we first synthesized Ni/Ni12P5@CNx Mott-Schottky heterojunction to ameliorate the high-cost and instability of precious metals. We modulated the different contents of Ni and Ni12P5 in the Ni/Ni12P5@CNx Mott-Schottky heterojunction, and found that 0.6 Ni/Ni12P5@CNx has outstanding electrocatalytic performances, with half-wave potential of 0.83 V, and OER potential of 1.49 V at 10 mA cm-2. Also, the ΔE value is only 0.66 V. Moreover, 0.6 Ni/Ni12P5@CNx is assembled into ZAB, which has a high power density of 181 mW cm-2 and a high specific capacity of 710 mAh g-1. This indicates it has a good cycle stability. The density functional theory (DFT) calculations reveal that electrons spontaneously flow from Ni to Ni12P5 through the formed buffer layer in the Ni/Ni12P5@CNx Mott-Schottky heterojunction. The Schottky barrier formed modulates the electrocatalytic pathway to have good bifunctional electrocatalytic activity for ORR and OER.

12.
Front Oncol ; 13: 1119886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845730

RESUMO

The shift in glucose utilization from oxidative phosphorylation to glycolysis is the hallmark of tumor cells. The overexpression of ENO1, one of the key enzymes in the glycolysis process, has been identified in several cancers, however, its role in pancreatic cancer (PC) is yet unclear. This study identifies ENO1 as an indispensable factor in the progression of PC. Interestingly, ENO1-knockout could inhibit cell invasion and migration and prevent cell proliferation in pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1 and MIA PaCa-2); meanwhile, tumor cell glucose uptake and lactate excretion also decreased significantly. Furthermore, ENO1-knockout reduced colony formation and tumorigenesis in both in vitro and in vivo tests. In total, after ENO1 knockout, 727 differentially expressed genes (DEGs) were identified in PDAC cells by RNA-seq. Gene Ontology enrichment analysis revealed that these DEGs are mainly associated with components such as the 'extracellular matrix' and 'endoplasmic reticulum lumen', and participate in the regulation of signal receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the identified DEGs are associated with pathways, such as 'fructose and mannose metabolism', 'pentose phosphate pathway, and 'sugar metabolism for amino and nucleotide. Gene Set Enrichment Analysis showed that ENO1 knockout promoted the upregulation of oxidative phosphorylation and lipid metabolism pathways-related genes. Altogether, these results indicated that ENO1-knockout inhibited tumorigenesis by reducing cell glycolysis and activating other metabolic pathways by altering the expression of G6PD, ALDOC, UAP1, as well as other related metabolic genes. Concisely, ENO1, which plays a vital role in the abnormal glucose metabolism in PC, can be exploited as a target to control carcinogenesis by reducing aerobic glycolysis.

13.
BMC Med ; 21(1): 68, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810084

RESUMO

BACKGROUND: Castration-resistant prostate cancer often metastasizes to the bone, and such bone metastases eventually become resistant to available therapies, leading to the death of patients. Enriched in the bone, TGF-ß plays a pivotal role in bone metastasis development. However, directly targeting TGF-ß or its receptors has been challenging for the treatment of bone metastasis. We previously found that TGF-ß induces and then depends on the acetylation of transcription factor KLF5 at K369 to regulate multiple biological processes, including the induction of EMT, cellular invasiveness, and bone metastasis. Acetylated KLF5 (Ac-KLF5) and its downstream effectors are thus potential therapeutic targets for treating TGF-ß-induced bone metastasis in prostate cancer. METHODS: A spheroid invasion assay was applied to prostate cancer cells expressing KLF5K369Q, which mimics Ac-KLF5, to screen 1987 FDA-approved drugs for invasion suppression. Luciferase- and KLF5K369Q-expressing cells were injected into nude mice via the tail artery to model bone metastasis. Bioluminescence imaging, micro-CT), and histological analyses were applied to monitor and evaluate bone metastases. RNA-sequencing, bioinformatic, and biochemical analyses were used to understand nitazoxanide (NTZ)-regulated genes, signaling pathways, and the underlying mechanisms. The binding of NTZ to KLF5 proteins was evaluated using fluorescence titration, high-performance liquid chromatography (HPLC), and circular dichroism (CD) analysis. RESULTS: NTZ, an anthelmintic agent, was identified as a potent invasion inhibitor in the screening and validation assays. In KLF5K369Q-induced bone metastasis, NTZ exerted a potent inhibitory effect in preventive and therapeutic modes. NTZ also inhibited osteoclast differentiation, a cellular process responsible for bone metastasis induced by KLF5K369Q. NTZ attenuated the function of KLF5K369Q in 127 genes' upregulation and 114 genes' downregulation. Some genes' expression changes were significantly associated with worse overall survival in patients with prostate cancer. One such change was the upregulation of MYBL2, which functionally promotes bone metastasis in prostate cancer. Additional analyses demonstrated that NTZ bound to the KLF5 protein, KLF5K369Q bound to the promoter of MYBL2 to activate its transcription, and NTZ attenuated the binding of KLF5K369Q to the MYBL2 promoter. CONCLUSIONS: NTZ is a potential therapeutic agent for bone metastasis induced by the TGF-ß/Ac-KLF5 signaling axis in prostate cancer and likely other cancers.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Camundongos Nus , Neoplasias da Próstata/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/genética
14.
Bioresour Technol ; 373: 128751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805829

RESUMO

To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.


Assuntos
2-Propanol , Butanóis , Fermentação , Compostos Férricos , Acetona , Butiratos , 1-Butanol , Clostridium/genética , Etanol
15.
Sci Total Environ ; 861: 160559, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36574546

RESUMO

With the determination of the Leloir pathway in a solventogenic wild-type strain WK through the transcriptional analysis, two pivotal genes (galK and galT) were systematically co-expressed to demonstrate a significantly enhanced galactose utilization for butanol production with the elimination of carbon catabolite repression (CCR). The gene-modified strain WK-Gal-4 could effectively co-utilize galactose and glucose by directly using an ultrasonication-assisted butyric acid-pretreated Gelidium amansii hydrolysate (BAU) as the substrate, exhibiting the optimal sugar consumption and butanol production from BAU of 20.31 g/L and 7.8 g/L with an increment by 62.35 % and 61.49 % over that by strain WK, respectively. This work for the first time develops a feasible approach to utilizing red algal biomass for butanol fermentation through exploring the metabolic regulation of carbohydrate catabolism, also offering a novel route to develop the future biorefinery using the cost-effective and sustainable marine feedstocks.


Assuntos
Repressão Catabólica , Alga Marinha , Butanóis/metabolismo , Galactose , Alga Marinha/metabolismo , Clostridium , 1-Butanol/metabolismo , Glucose/metabolismo , Fermentação
16.
Cell Mol Gastroenterol Hepatol ; 15(2): 373-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36244646

RESUMO

BACKGROUND & AIMS: Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS: We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS: We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS: α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.


Assuntos
Canais de Cálcio , Neoplasias Pancreáticas , Humanos , Canais de Cálcio/metabolismo , Fosforilação , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
17.
Mod Rheumatol ; 33(1): 111-121, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35141748

RESUMO

OBJECTIVE: This study aimed to investigate the linkage of long non-coding RNA (lncRNA) expression profile with etanercept response in rheumatoid arthritis (RA) patients. METHODS: Peripheral blood mononuclear cell (PBMC) samples were collected from 80 RA patients prior to etanercept treatment. Samples from eight responders and eight non-responders at week 24 (W24) were proposed to RNA-sequencing, then 10 candidate lncRNAs were sorted and their PBMC expressions were validated by reverse transcription quantitative chain reaction (RT-qPCR) in 80 RA patients. Subsequently, clinical response by lncRNA (CRLnc) prediction model was established. RESULTS: RNA-sequencing identified 254 up-regulated and 265 down-regulated lncRNAs in W24 responders compared with non-responders, which were enriched in immune or joint related pathways such as B-cell receptor signaling, osteoclast differentiation and T-cell receptor signaling pathways, etc. By reverse transcription quantitative chain reaction (RT-qPCR) validation: Two lncRNAs were correlated with W4 response, three lncRNAs were correlated with W12 response, seven lncRNAs were correlated with W24 response. Subsequently, to construct and validate CRLnc prediction model, 80 RA patients were randomly divided into test set (n = 40) and validation set (n = 40). In the test set, lncRNA RP3-466P17.2 (OR = 9.743, P = .028), RP11-20D14.6 (OR = 10.935, P = .007), RP11-844P9.2 (OR = 0.075, P = .022), and TAS2R64P (OR = 0.044, P = .016) independently related to W24 etanercept response; then CRLnc prediction model integrating these four lncRNAs presented a good value in predicting W24 etanercept response (Area Under Curve (AUC): 0.956, 95%CI: 0.896-1.000). However, in the validation set, the CRLnc prediction model only exhibited a certain value in predicting W24 etanercept response (AUC: 0.753, 95%CI: 0.536-0.969). CONCLUSIONS: CRLnc prediction model is potentially a useful tool to instruct etanercept treatment in RA patients.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Humanos , Etanercepte/farmacologia , Etanercepte/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Leucócitos Mononucleares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética
18.
Oxid Med Cell Longev ; 2022: 2896049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062197

RESUMO

Background: Compound fuling granule (CFG) is a traditional Chinese medicine formula that is used for more than twenty years to treat ovarian cancer (OC) in China. However, the underlying processes have yet to be completely understood. This research is aimed at uncovering its molecular mechanism and identifying possible therapeutic targets. Methods: Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of CFG were analyzed by LC-MS/MS, and the active components of CFG were screened according to their oral bioavailability and drug-likeness index. The validated targets were extracted from PharmMapper and PubChem databases. Venn diagram and STRING website diagrams were used to identify intersection targets, and a protein-protein interaction network was prepared using STRING. The ingredient-target network was established using Cytoscape. Molecular docking was performed to visualize the molecule-protein interactions using PyMOL 2.3. Enrichment and pathway analyses were performed using FunRich software and Reactome pathway, respectively. Experimental validations, including CCK-8 assay, wound-scratch assay, flow cytometry, western blot assay, histopathological examination, and immunohistochemistry, were conducted to verify the effects of CFG on OC cells. Results: A total of 56 bioactive ingredients of CFG and 185 CFG-OC-related targets were screened by network pharmacology analysis. The potential therapeutic targets included moesin, glutathione S-transferase kappa 1, ribonuclease III (DICER1), mucin1 (MUC1), cyclin-dependent kinase 2 (CDK2), E1A binding protein p300, and transcription activator BRG1. Reactome analysis showed 51 signaling pathways (P < 0.05), and FunRich revealed 44 signaling pathways that might play an important role in CFG against OC. Molecular docking of CDK2 and five active compounds (baicalin, ignavine, lactiflorin, neokadsuranic acid B, and deoxyaconitine) showed that baicalin had the highest affinity to CDK2. Experimental approaches confirmed that CFG could apparently inhibit OC cell proliferation and migration in vitro; increase apoptosis; decrease the protein expression of MUC1, DICER1, and CDK2; and suppress the progression and distant metastasis of OC in vivo. DICER1, a tumor suppressor, is essential for microRNA synthesis. Our findings suggest that CFG may impair the production of miRNAs in OC cells. Conclusion: Based on network pharmacology, molecular docking, and experimental validation, the potential mechanism underlying the function of CFG in OC was explored, which supplies the theoretical groundwork for additional pharmacological investigation.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Ovarianas , Wolfiporia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cromatografia Líquida , RNA Helicases DEAD-box , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias Ovarianas/tratamento farmacológico , Ribonuclease III , Espectrometria de Massas em Tandem
19.
Bioresour Technol ; 363: 127962, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115509

RESUMO

In this study, Clostridium sp. strain WK-AN1 carrying both genes of agarase (Aga0283) and neoagarobiose hydrolase (NH2780) were successfully constructed to convert agar polysaccharide directly into butanol, contributing to overcome the lack of algal hydrolases in solventogenic clostridia. Through the optimization by the Plackett-Burman design (PBD) and response surface methodology (RSM), a maximal butanol production of 6.42 g/L was achieved from 17.86 g/L agar. Further application of utilizing the butyric acid pretreated Gelidium amansii hydrolysate demonstrated the modified strain obtained the butanol production of 7.83 g/L by 1.63-fold improvement over the wild-type one. This work for the first time establishes a novel route to utilize red algal polysaccharides for butanol fermentation by constructing a solventogenic clostridia-specific secretory expression system for heterologous agarases, which will provide insights for future development of the sustainable third-generation biomass energy.


Assuntos
Butanóis , Rodófitas , 1-Butanol/metabolismo , Ágar/metabolismo , Butanóis/metabolismo , Ácido Butírico/metabolismo , Clostridium/metabolismo , Fermentação , Rodófitas/metabolismo
20.
Front Immunol ; 13: 880288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572559

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with higher mortality, and means are urgently needed to improve the prognosis. T cell exclusion (TCE) plays a pivotal role in immune evasion, and lncRNAs represent a large group of tumor development and progression modulators. Using the TCGA HCC dataset (n=374), we identified 2752 differentially expressed and 702 TCE-associated lncRNAs, of which 336 were in both groups. As identified using the univariate Cox regression analysis, those associated with overall survival (OS) were subjected to the LASSO-COX regression analysis to develop a prognosis signature. The model, which consisted of 11 lncRNAs and was named 11LNCPS for 11-lncRNA prognosis signature, was validated and performed better than two previous models. In addition to OS and TCE, higher 11LNCPS scores had a significant correlation with reduced infiltrations of CD8+ T cells and dendritic cells (DCs) and decreased infiltrations of Th1, Th2, and pro B cells. As expected, these infiltration alterations were significantly associated with worse OS in HCC. Analysis of published data indicates that HCCs with higher 11LNCPS scores were transcriptomically similar to those that responded better to PDL1 inhibitor. Of the 11LNCPS lncRNAs, LINC01134 and AC116025.2 seem more crucial, as their upregulations affected more immune cell types' infiltrations and were significantly associated with TCE, worse OS, and compromised immune responses in HCC. LncRNAs in the 11LNCPS impacted many cancer-associated biological processes and signaling pathways, particularly those involved in immune function and metabolism. The 11LNCPS should be useful for predicting prognosis and immune responses in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Humanos , Imunidade , Neoplasias Hepáticas/patologia , Prognóstico , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA