Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
ACS Chem Biol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723147

RESUMO

As an important functional monosaccharide, glucosamine (GlcN) is widely used in fields such as medicine, food nutrition, and health care. Here, we report a distinct GlcN biosynthesis method that utilizes engineered Bacillus subtilis glucosamine-6-phosphate synthase (BsGlmS) to convert D-fructose to directly generate GlcN. The best variant obtained by using a combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy was a quadruple mutant S596D/V597G/S347H/G299Q (BsGlmS-BK19), which has a catalytic activity 1736-fold that of the wild type toward D-fructose. Upon using mutant BK19 as a whole-cell catalyst, D-fructose was converted into GlcN with 65.32% conversion in 6 h, whereas the wild type only attained a conversion rate of 0.31% under the same conditions. Molecular docking and molecular dynamics simulations were implemented to provide insights into the mechanism underlying the enhanced activity of BK19. Importantly, the BsGlmS-BK19 variant specifically catalyzes D-fructose without the need for phosphorylated substrates, representing a significant advancement in GlcN biosynthesis.

2.
Poult Sci ; 103(7): 103820, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38759565

RESUMO

The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.

3.
Heliyon ; 10(9): e30006, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694075

RESUMO

Background: Wall shear stress (WSS) has been proved to be related to the formation, development and rupture of intracranial aneurysms. Aneurysm wall enhancement (AWE) on magnetic resonance imaging (MRI) can be caused by inflammation and have confirmed its relationship with low WSS. High WSS can also result in inflammation but the research of its correlation with AWE is lack because of the focus on large aneurysms limited by 3T MRI in most previous studies.This study aimed to assess the potential association between high or low WSS and AWE in different aneuryms. Especially the relationship between high WSS and AWE in small aneurysm. Methods: Forty-three unruptured intracranial aneurysms in 42 patients were prospectively included for analysis. 7.0 T MRI was used for imaging. Aneurysm size was measured on three-dimensional time-of-flight (TOF) images. Aneurysm-to-pituitary stalk contrast ratio (CRstalk) was calculated on post-contrast black-blood T1-weighted fast spin echo sequence images. Hemodynamics were assessed by four-dimensional flow MRI. Results: The small aneurysms group had more positive WSS-CRstalk correlation coefficient distribution (dome: 78.6 %, p = 0.009; body: 50.0 %, p = 0.025), and large group had more negative coefficient distribution (dome: 44.8 %, p = 0.001; body: 69.0 %, p = 0.002). Aneurysm size was positively correlated with the significant OSI-CRstalk correlation coefficient at the dome (p = 0.012) and body (p = 0.010) but negatively correlated with the significant WSS-CRstalk correlation coefficient at the dome (p < 0.001) and body (p = 0.017). Conclusion: AWE can be mediated by both high and low WSS, and translate from high WSS- to low WSS-mediated pathways as size increase. Additionally, AWE may serve as an indicator of the stage of aneurysm development via different correlations with hemodynamic factors.

4.
Sensors (Basel) ; 24(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38610259

RESUMO

Ultrasonic guided waves represent a new development in the field of non-destructive testing. Longitudinal guided waves are mostly used to monitor the damage of steel bars, but the received signal is usually degraded and noisy owing to its dispersive propagation and multimodal behavior, making its implementation and location challenging. The torsional mode of T (0, 1) is not dispersive in the propagation of a steel bar and only produces circumferential displacement. It was chosen, in this study, to conduct guided wave-based damage monitoring on steel bars to reduce the signal processing complexity. The defects of steel bars, including circular surface defects, internal defects, and uniform damage defects, were thoroughly investigated, respectively, using numerical simulation. The waves were excited and received using the pitch-and-catch technique and the collected monitoring signals were processed using Hilbert transformation to highlight the amplitude and time-of-flight values of the wave signals, which were used for defect identification. In this paper, the reflectivity of guided waves is compared between torsional waves and longitudinal waves, in each case. The impact of defect size changes on damage monitoring is studied and the sensitivity of both the wave frequency and the wave mode (L and T) is also discussed. The results show that the monitoring method based on the torsional wave T (0, 1) is more sensitive to surface defects than the conventional method based on longitudinal waves. The reflectivity of the torsional wave T (0, 1) can be twice that of the longitudinal wave L (0, 1) when the depth of the defect in the circumferential grooves is less than 50% of the diameter of the steel bar. It is more sensitive to shallow surface defects within half of the bar's radius, and it can also effectively identify defects under the conditions of the uniform damage defects of steel bars, even when the measurements are heavily noise-polluted. This proves the superiority of the torsional guided wave T (0, 1) in defect monitoring and provides a theoretical basis for the application of the torsional guided wave T (0, 1) in actual monitoring.

5.
J Sci Food Agric ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666511

RESUMO

BACKGROUND: Folate is crucial for maintaining health, but humans are unable to synthesize folate and need to obtain it from food. Lactiplantibacillus plantarum can produce the necessary vitamin B for the human body, including folate. Whole genome sequencing technology can clarify the physiological characteristics of folate production in Lactiplantibacillus plantarum. In order to explore new Lactiplantibacillus plantarum that produce folate, the folate production and probiotic characteristics of Lactiplantibacillus plantarum ZFM55 isolated from infant feces were investigated, and whole genome sequencing was performed. RESULTS: The folate synthesis ability of Lactiplantibacillus plantarum ZFM55 were measured, and its total folate production was 299.72 ± 28.81 ng mL-1. Subsequently, its probiotic properties were explored. The antibacterial test showed that its inhibition zone diameter against Staphylococcus aureus and Salmonella typhimurium was 15.5 ± 0.82 mm and 13.88 ± 0.98 mm, respectively. The tolerance test results indicated that it maintained good activity in simulated gastrointestinal tract and bile salt environments. In vitro intestinal simulation experiments had confirmed that Lactiplantibacillus plantarum ZFM55 can increase the abundance of beneficial bacteria such as Bifidobacteria in the intestine and inhibit the growth of harmful bacteria such as Escherichia_Shigella. Genomic sequencing indicated that the genetic material of Lactiplantibacillus plantarum ZFM55 contains one chromosome and three plasmids, and it has 20 genes related to folate synthesis, which explains its ability to produce folate. CONCLUSION: This study reports a new potential probiotic that produces folate, and provides ideas for exploring probiotics with specific probiotic characteristics. © 2024 Society of Chemical Industry.

6.
Nanomaterials (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38668207

RESUMO

Tightly coupled meta-atoms (TCMAs) are densely packed metamaterials with unnatural refractive indexes. Actively modulated TCMAs with tunable optical properties have found many applications in beam shaping, holography, and enhanced light-matter interactions. Typically, TCMAs are studied in the classic Bloch theory. Here, tightly coupled H-shaped meta-atoms are proposed with an ultra-high permittivity of ~6000, and their active modulation with graphene is designed by using the tightly coupled dipole array (TCDA) theory. The H-shaped meta-atoms are used as dipole arms, and the graphene strips function as the dipole loads. By tuning the chemical potential of graphene, the resonant amplitude, frequency, and permittivity are dynamically modulated. The simulations indicate that the real and imaginary parts of permittivity change from 6854 to 1522 and from 7356 to 2870, respectively. The experimental validation demonstrates a modulation depth of 11.6% in the resonant frequency, i.e., from 219.4 to 195 GHz, and a substantial 52.5% modulation depth in transmittance under a bias voltage of less than 1.5 V.

7.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38451557

RESUMO

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.

8.
Luminescence ; 39(3): e4700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506122

RESUMO

Three new neutral and ionic phosphorescent iridium(III) complexes were successfully prepared using 1-(6-methoxynaphthalen-2-yl)isoquinoline as the main ligand, while the auxiliary ligand was 2-(2-1H-imidazolyl)pyridine. Three complexes (Ir1, Ir2, Ir3) showed red emission, peaking at 610, 609, and 615 nm, respectively, and they exhibited good solubility and excellent photophysical properties in different solvents, which is suitable to prepare organic light-emitting diodes (OLEDs) by solution method. Among the three OLEDs prepared by iridium(III) complexes using the solution method, the device based on Ir2 possessed better electroluminescent properties, and its maximum brightness, current efficiency (CE), power efficiency (PE), and the maximum external quantum efficiency (EQE) were 507.2 cd m-2 , 0.14 cd A-1 , 0.06 lm W-1 , and 0.14%. respectively, proving that the three complexes have a certain of potential for OLEDs applications and are expected to expand the applications of iridium(III) complexes for OLEDs.


Assuntos
Irídio , Ligantes , Íons , Solubilidade , Solventes
9.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498444

RESUMO

Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.

10.
Nanotechnology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537264

RESUMO

This paper systematically studied the composition-controlled nonlinear optical properties and pulse modulation of ternary ReS2(1-x)Se2xalloys for the first time. The compositionally modulated characteristics of ReS2(1-x)Se2xon the band gap were simulated based on the first principles. We investigated the effect of the band gap on the saturable absorption properties. In addition, we demonstrated the modulation characteristics of different components ReS2(1-x)Se2xon 1.5 µm Q-switched pulse performance. The Q-switched threshold, repetition rate, and pulse duration increase as the S(sulfur)-element composition rise. And pulse energy also was affected by the S(sulfur)-element composition. The ReS0.8Se1.2SA was selected to realize a conventional soliton with high energy in the all-fiber mode-locked laser. The pulse was centered at 1562.9 nm with a pulse duration of 2.26 ps, a repetition rate of 3.88 MHz, and maximum pulse energy of 1.95 nJ. This work suggests that ReS2(1-x)Se2xhas great potential in laser technology and nonlinear optics, and widely extends the material applications in ultrafast photonics. .

11.
Int J Biol Macromol ; 265(Pt 2): 131116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522704

RESUMO

Dictyophora indusiata is medicinal and edible fungi containing various nutrients. The aim of this study was to investigate the efficient extraction and structural evolution of Dictyophora indusiata polysaccharide during the vitro digestion based on steam explosion pretreatment methods. In this study, the extraction rate of Dictyophora indusiata polysaccharide was optimized by steam explosion pretreatment methods, which was 2.46 folds that of the water extraction method. In addition, the digestion and fermentation properties of Dictyophora indusiata polysaccharide before and after steam explosion were evaluated in vitro by the changes of molecular weights, total and reducing sugars levels, surface morphology and functional groups, which showed that the structure of Dictyophora indusiata polysaccharide remained stable after salivary-gastric digestion, and partially entered the large intestine, where it could be utilized by gut microbiota. Dictyophora indusiata polysaccharide promoted the increase of beneficial bacteria Megamonas and increased the content of acetic acid, propionic acid and butyric acid, which was 2.17, 2.81, 2.43 folds that of the CON group after fermentation for 24 h, and 1.87, 2.77, 1.90 folds that of the CON group after fermentation for 48 h, respectively. This study will provide theoretical basis for the high value utilization of Dictyophora indusiata polysaccharide.


Assuntos
Basidiomycota , Vapor , Basidiomycota/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Água
12.
ACS Appl Mater Interfaces ; 16(11): 13989-13996, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441421

RESUMO

Benefiting from the brain-inspired event-driven feature and asynchronous sparse coding approach, spiking neural networks (SNNs) are becoming a potentially energy-efficient replacement for conventional artificial neural networks. However, neuromorphic devices used to construct SNNs persistently result in considerable energy consumption owing to the absence of sufficient biological parallels. Drawing inspiration from the transport nature of Na+ and K+ in synapses, here, a Li-based memristor (LixAlOy) was proposed to emulate the biological synapse, leveraging the similarity of Li as a homologous main group element to Na and K. The Li-based memristor exhibits ∼8 ns ultrafast operating speed, 1.91 and 0.72 linearity conductance modulation, and reproducible switching behavior, enabled by lithium vacancies forming a conductive filament mechanism. Moreover, these memristors are capable of simulating fundamental behaviors of a biological synapse, including long-term potentiation and long-term depression behaviors. Most importantly, a threshold-tunable leaky integrate-and-fire (TT-LIF) neuron is built using LixAlOy memristors, successfully integrating synaptic signals from both temporal and spatial levels and achieving an optimal threshold of SNNs. A computationally efficient TT-LIF-based SNN algorithm is also implemented for image recognition schemes, featuring a high recognition rate of 90.1% and an ultralow firing rate of 0.335%, which is 4 times lower than those of other memristor-based SNNs. Our studies reveal the ion dynamics mechanism of the LixAlOy memristor and confirm its potential in rapid switching and the construction of SNNs.


Assuntos
Lítio , Redes Neurais de Computação , Algoritmos , Encéfalo , Íons , Neurônios
13.
Clin Transl Med ; 14(2): e1578, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38356419

RESUMO

BACKGROUND AND AIMS: In gastric cancer, the response rate of programmed cell death protein-1 (PD-1) inhibitor is far from satisfactory, indicating additional nonredundant pathways might hamper antitumour immunity. V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been reported in several malignancies as a novel immune-checkpoint. Nevertheless, the role of VISTA in gastric cancer still remains obscure. Our purpose is to explore the clinical significance and potential mechanism of VISTA in affecting gastric cancer patients' survival and immunotherapeutic responsiveness. METHODS: Our study recruited eight independent cohorts with a total of 1403 gastric cancer patients. Immunohistochemistry, multiplex immunofluorescence, flow cytometry or intracellular flow cytometry, quantitative polymerase chain reaction, western blotting, fluorescence-activated cell sorting, magnetic-activated cell sorting, smart-seq2, in vitro cell co-culture and ex vivo tumour inhibition assays were applied to investigate the clinical significance and potential mechanism of VISTA in gastric cancer. RESULTS: VISTA was predominantly expressed on tumour-associated macrophages (TAMs), and indicated poor clinical outcomes and inferior immunotherapeutic responsiveness. VISTA+ TAMs showed a mixed phenotype. Co-culture of TAMs and CD8+ T cells indicated that VISTA+ TAMs attenuated effective function of CD8+ T cells. Blockade of VISTA reprogrammed TAMs to a proinflammatory phenotype, reactivated CD8+ T cells and promoted apoptosis of tumour cells. Moreover, blockade of VISTA could also enhance the efficacy of PD-1 inhibitor, suggesting that blockade of VISTA might synergise with PD-1 inhibitor in gastric cancer. CONCLUSIONS: Our data revealed that VISTA was an immune-checkpoint associated with immunotherapeutic resistance. Blockade of VISTA reprogrammed TAMs, promoted T-cell-mediated antitumour immunity, and enhanced efficacy of PD-1 inhibitor, which might have implications in the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico , Macrófagos Associados a Tumor/metabolismo , Imunoglobulinas
14.
Opt Lett ; 49(4): 956, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359226

RESUMO

This publisher's note contains a correction to Opt. Lett.49, 202 (2024)10.1364/OL.507004.

15.
Nanomicro Lett ; 16(1): 116, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358567

RESUMO

Free-standing covalent organic framework (COFs) nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li+ in lithium-ion batteries, while simultaneously exposing affluent active sites in supercapacitors. The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors (LICs). Herein, for the first time, custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode, respectively, for an all-COF nanofilm-structured LIC. The COFBTMB-TP nanofilm with strong electronegative-CF3 groups enables tuning the partial electron cloud density for Li+ migration to ensure the rapid anode kinetic process. The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity. Due to the aligned 1D channel, 2D aromatic skeleton and accessible active sites of COF nanofilms, the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm-3 at a high-power density of 6 W cm-3, excellent rate capability, good cycle stability with the capacity retention rate of 77% after 5000-cycle. The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors. After being comprehensively explored via ex situ XPS, 7Li solid-state NMR analyses, and DFT calculation, it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C-F bonds during lithium storage. COFBTMB-TP exhibits a strong interaction with Li+ due to the C-F, C=O, and C-N bonds, facilitating Li+ desolation and absorption from the electrolyte. This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.

16.
Acta Pharm Sin B ; 14(2): 712-728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322347

RESUMO

Coronary restenosis is an important cause of poor long-term prognosis in patients with coronary heart disease. Here, we show that lysine methyltransferase SMYD2 expression in the nucleus is significantly elevated in serum- and PDGF-BB-induced vascular smooth muscle cells (VSMCs), and in tissues of carotid artery injury-induced neointimal hyperplasia. Smyd2 overexpression in VSMCs (Smyd2-vTg) facilitates, but treatment with its specific inhibitor LLY-507 or SMYD2 knockdown significantly inhibits VSMC phenotypic switching and carotid artery injury-induced neointima formation in mice. Transcriptome sequencing revealed that SMYD2 knockdown represses the expression of serum response factor (SRF) target genes and that SRF overexpression largely reverses the inhibitory effect of SMYD2 knockdown on VSMC proliferation. HDAC3 directly interacts with and deacetylates SRF, which enhances SRF transcriptional activity in VSMCs. Moreover, SMYD2 promotes HDAC3 expression via tri-methylation of H3K36 at its promoter. RGFP966, a specific inhibitor of HDAC3, not only counteracts the pro-proliferation effect of SMYD2 overexpression on VSMCs, but also inhibits carotid artery injury-induced neointima formation in mice. HDAC3 partially abolishes the inhibitory effect of SMYD2 knockdown on VSMC proliferation in a deacetylase activity-dependent manner. Our results reveal that the SMYD2-HDAC3-SRF axis constitutes a novel and critical epigenetic mechanism that regulates VSMC phenotypic switching and neointimal hyperplasia.

17.
Plants (Basel) ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337990

RESUMO

Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.

18.
ACS Appl Mater Interfaces ; 16(7): 8960-8973, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329839

RESUMO

Vacuum-free, solution-processable high-κ-oxide dielectrics are considered to be a key element for emerging low-cost flexible electronics. However, they usually suffer from low breakdown strength and frequency-dependent capacitance, which limit their broader applications. Here, we report a universal way to improve solution-based high-κ oxide dielectric properties (e.g., Al2O3, ZrO2, Ga2O3, Sc2O3, Ho2O3, and Sm2O3) by sulfate incorporation. In-depth characterization shows that sulfate incorporation could reduce hydrogen and oxygen vacancy-related defects in high-κ oxides, thereby improving the dielectric performance. The optimized S-doped high-κ oxides show smooth surface (rms < 0.20 nm), low leakage current (∼10-7 A/cm2@4 MV/cm), excellent dielectric breakdown strength (>10 MV/cm), and stable capacitance-frequency characteristics. Besides, oxide thin-film transistors based on these high-κ dielectrics exhibit excellent performance (e.g., mobility >20 cm2 V-1 s-1, on/off ratio of ∼107, threshold swing of ∼0.14 V dec-1, threshold voltage of ∼0 V, and hysteresis of ∼0.02 V). Thus, this work provides a general approach for the development of high-quality solution-based high-κ oxides for transistor circuitry.

19.
J Photochem Photobiol B ; 252: 112861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335869

RESUMO

Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.


Assuntos
Peixes , Pele , Humanos , Animais , Células HEK293 , Pele/metabolismo , Peixes/metabolismo , Opsinas/metabolismo , Luz
20.
J Chromatogr A ; 1719: 464734, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38368836

RESUMO

Abuse of glucocorticoid veterinary drugs in dairy industry can potentially threat milk safety and consequently influence human health. Here a reliable method for determination of 58 glucocorticoid drug residues in milk was established by combining solid phase extraction with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The analytes were extracted with acetonitrile and cleanup with EMR-Lipid lipid removal column. The analytes were chromatographically separated using Poroshell EC-C18 column and acquired by electrospray ionization with multiple-reaction monitoring (MRM) mode. The limit of quantification (S/N ≥ 10) ranged from 0.2 to 2.0 µg/kg and the limit of detection (S/N ≥ 3) ranged from 0.1 to 1.0 µg/kg. Average recoveries were from 71% to 113%, the relative standard deviations (RSDs) were less than 15%, and the correlation coefficients (R2) of calibration curves exceeded 0.99. The method was applied to detect twenty milk products obtained from local supermarkets including ten pasteurized milk and ten UHT milk. Two endogenous glucocorticoids, i.e. hydrocortisone and cortisone were detected but not exceed the maximum residue limits (MRLs).


Assuntos
Leite , Espectrometria de Massas em Tandem , Humanos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Leite/química , Espectrometria de Massas em Tandem/métodos , Glucocorticoides/análise , Extração em Fase Sólida , Lipídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA