RESUMO
(1) Background: SMARCA4-deficient undifferentiated uterine sarcoma (SDUS) is a rare and aggressive cancer that urgently requires novel therapeutic strategies. Despite the proven efficacy of immunotherapy in various cancer types, its application in SDUS remains largely unexplored. This study aims to investigate the immune microenvironment of SDUS to evaluate the feasibility of utilizing immunotherapy. (2) Methods: Multiplex immunofluorescence (mIF) was employed to examine the immune microenvironment in two cases of SDUS in comparison to other subtypes of endometrial stromal sarcomas (ESSs). This research involved a comprehensive evaluation of immune cell infiltration, cellular interactions, and spatial organization within the tumor immune microenvironment (TiME). Statistical analysis was performed to assess differences in immune cell densities and interactions between SDUS and other ESSs. (3) Results: SDUS exhibited a significantly higher density of cytotoxic T lymphocytes (CTLs), T helper (Th) cells, B cells, and macrophages compared to other ESSs. Notable cellular interactions included Th-CTL and Th-B cell interactions, which were more prominent in SDUS. The spatial analysis revealed distinct immune niches characterized by lymphocyte aggregation and a vascular-rich environment, suggesting an active and engaged immune microenvironment in SDUS. (4) Conclusions: The results suggest that SDUS exhibits a highly immunogenic TiME, characterized by substantial lymphocyte infiltration and dynamic cellular interactions. These findings highlight the potential of immunotherapy as an effective treatment approach for SDUS. However, given the small number of samples evaluated, these conclusions should be drawn with caution. This study underscores the importance of additional investigation into immune-targeted therapies for this challenging cancer subtype, with a larger sample size to validate and expand upon these preliminary findings.
Assuntos
DNA Helicases , Imunoterapia , Sarcoma , Fatores de Transcrição , Microambiente Tumoral , Neoplasias Uterinas , Humanos , Feminino , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Neoplasias Uterinas/terapia , Neoplasias Uterinas/imunologia , Neoplasias Uterinas/patologia , Neoplasias Uterinas/genética , Sarcoma/terapia , Sarcoma/imunologia , Sarcoma/genética , Sarcoma/patologia , Fatores de Transcrição/genética , DNA Helicases/genética , DNA Helicases/deficiência , DNA Helicases/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/imunologia , Pessoa de Meia-Idade , Sarcoma do Estroma Endometrial/terapia , Sarcoma do Estroma Endometrial/genética , Sarcoma do Estroma Endometrial/imunologia , Sarcoma do Estroma Endometrial/patologiaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , AnimaisRESUMO
Tumor vasculature often exhibits disorder and inefficiency. Vascular normalization offers potential for alleviating hypoxia and optimizing drug delivery in tumors. However, identifying effective agents is hindered by a lack of robust screening. We aimed to establish a comprehensive method using the zebrafish functional xenograft vasculature platform (zFXVP) to visualize and quantify tumor vasculature changes. Employing zFXVP, we systematically screened compounds, identifying PF-502 as a robust vascular normalization agent. Mechanistic studies showed PF-502 induces endothelial cell-cycle arrest, streamlines vasculature, and activates Notch1 signaling, enhancing stability and hemodynamics. In murine models, PF-502 exhibited pronounced vascular normalization and improved drug delivery at a sub-maximum tolerated dose. These findings highlight zFXVP's utility and suggest PF-502 as a promising adjunctive for vascular normalization in clinical settings.
RESUMO
Leukemogenesis is proposed to be a multistep process by which normal hematopoietic stem and progenitor cells are transformed into full-blown leukemic cells, the details of which are not fully understood. Here, we performed serial single-cell transcriptome analyses of preleukemic and leukemic cells (PLCs) and constructed the cellular and molecular transformation trajectory in a Myc-driven acute myeloid leukemia (AML) model in mice, which represented the transformation course in patients. We found that the Myc targets were gradually up-regulated along the trajectory. Among them were splicing factors, which showed stage-specific prognosis for AML patients. Furthermore, we dissected the detailed gene network of a tipping point for hematopoietic stem and progenitor cells (HSPCs) to generate initiating PLCs, which was characterized by dramatically increased splicing factors and unusual RNA velocity. In the late stage, PLCs acquired explosive heterogeneity through RNA alternative splicing. Among them, the Hsp90aa1hi subpopulation was conserved in both human and mouse AML and associated with poor prognosis. Exon 4 skipping of Tmem134 was identified in these cells. While the exon skipping product Tmem134ß promoted the cell cycle, full-length Tmem134α delayed tumorigenesis. Our study emphasized the critical roles of RNA splicing in the full process of leukemogenesis.
Assuntos
Leucemia Mieloide Aguda , Análise da Expressão Gênica de Célula Única , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/genética , Splicing de RNA/genética , RNA , Fatores de Processamento de RNA/genética , Transcriptoma/genéticaRESUMO
The immune checkpoint inhibitor (ICI), anti-programmed cell death receptor-1 (PD-1) antibody, has gained widespread approval for treating various malignancies. Among the immune-related adverse reactions (irAEs) during ICI treatment, the lichenoid reaction is noteworthy. Sintilimab, a new PD-1 inhibitor, has secured approval in China for treating refractory non-Hodgkin's lymphoma, and phase I/II clinical trials for other solid tumors are ongoing both domestically and abroad. This paper presents a case of a mucocutaneous lichenoid reaction associated with sintilimab therapy, its diagnosis, and management. Our study, using multiplex immunofluorescence staining, reveals localized infiltration of CD4+ and CD8+ T lymphocytes in the subepithelial lamina propria region with upregulated PD-1 expression, implying an association between PD-1 expression upregulation and lichenoid reactions provoked by PD-1 monoclonal antibody. We provide a summary of clinical characteristics and treatment guidelines for lichenoid reactions induced by ICIs from previous reports, highlighting the success of a combined therapeutic regimen of oral antihistamines and topical corticosteroids in controlling symptoms without interrupting ICI treatment.
RESUMO
Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.
Assuntos
Síndrome de Alagille , Ductos Biliares Intra-Hepáticos , Transdução de Sinais , Animais , Humanos , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Mosaicismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regeneração , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/patologia , FibroblastosRESUMO
Gastric cancer (GC) is one of the most frequent and lethal malignancies in the world. However, our understanding of the mechanisms underlying its initiation and progression is limited. Here, we generate a series of primary GC models in mice with genome-edited gastric organoids, which elucidate the genetic drivers for sequential transformation from dysplasia to well-differentiated and poorly differentiated GC. Further, we find that the orthotopic GC, but not the subcutaneous GC even with the same genetic drivers, display remote metastasis, suggesting critical roles of the microenvironment in GC metastasis. Through single-cell RNA-seq analyses and functional studies, we show that the interaction between fibronectin 1 on stomach-specific macrophages and integrin a6ß4 on GC cells promotes remote metastases. Taken together, our studies propose a strategy to model GC and dissect the genetic and microenvironmental factors driving the full-range gastric tumorigenesis.
Assuntos
Fibronectinas , Neoplasias Gástricas , Camundongos , Animais , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transformação Celular Neoplásica , Integrinas , Microambiente TumoralRESUMO
Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.
Assuntos
Carcinoma de Células Escamosas , Neoplasias da Bexiga Urinária , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Diferenciação Celular , Cisplatino , Humanos , Camundongos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologiaRESUMO
Maoji Jiu (MJ), a medicinal wine, has been used commonly by the Chinese to enrich and nourish the blood. In this study, the aim is to examine the hematopoietic function of MJ and investigate its hematopoietic regulation mechanism. Thirty-six female Sprague-Dawley rats (200 ± 20 g) were randomly divided into six groups with six rats in each group. The blood deficiency model was induced by injecting hypodermically with N-acetylphenylhydrazine (APH) and injecting intraperitoneally with cyclophosphamide (CTX), and treatment drugs were given by oral gavage twice a day for continuous 10 days from the start of the experiments. The administration of MJ improved the levels of white blood cells (WBCs), red blood cells (RBCs), hemoglobin (HGB), and hematocrit (HCT) in the blood deficiency model rats. Hematopoietic effect involves regulating the antioxidant activity in the liver and the levels of Bcl-2, Bax, erythropoietin (EPO), transforming growth factor-beta-1 (TGF-ß1), and macrophage colony-stimulating factor (M-CSF) mRNA in spleen tissues to enhance extramedullary hematopoiesis. This study suggests that MJ has a beneficial effect on blood deficiency model rats.
RESUMO
The 'angiogenic switch' is critical for tumor progression. However, the pathological details and molecular mechanisms remain incompletely characterized. In this study, we established mammal xenografts in zebrafish to visually investigate the first vessel growth (angiogenic switch) in real-time, by inoculating tumor cells into the perivitelline space of live optically transparent Transgenic (flk1:EGFP) zebrafish larvae. Using this model, we found that hypoxia and hypoxia-inducible factor (HIF) signaling were unnecessary for the angiogenic switch, whereas vascular endothelial growth factor A gene (Vegfa) played a crucial role. Mechanistically, transcriptome analysis showed that the angiogenic switch was characterized by inhibition of translation, but not hypoxia. Phosphorylation of eukaryotic translation initiation factor 2 alpha (Eif2α) and the expression of Vegfa were increased in the angiogenic switch microtumors, and 3D tumor spheroids, and puromycin-treated tumor cells. Vegfa overexpression promoted early onset of the angiogenic switch, whereas Vegfa knockout prevented the first tumor vessel from sprouting. Pretreatment of tumor cells with puromycin promoted the angiogenic switch in vivo similarly to Vegfa overexpression, whereas Vegfa knockdown suppressed the increase. This study provides direc and dynamic in vivo evidences that inhibition of translation, but not hypoxia or HIF signaling promotes the angiogenic switch in tumor by increasing Vegfa transcription.
RESUMO
Small cell lung cancer (SCLC) is notorious for its early and frequent metastases, which contribute to it as a recalcitrant malignancy. To understand the molecular mechanisms underlying SCLC metastasis, we generated SCLC mouse models with orthotopically transplanted genome-edited lung organoids and performed multiomics analyses. We found that a deficiency of KMT2C, a histone H3 lysine 4 methyltransferase frequently mutated in extensive-stage SCLC, promoted multiple-organ metastases in mice. Metastatic and KMT2C-deficient SCLC displayed both histone and DNA hypomethylation. Mechanistically, KMT2C directly regulated the expression of DNMT3A, a de novo DNA methyltransferase, through histone methylation. Forced DNMT3A expression restrained metastasis of KMT2C-deficient SCLC through repressing metastasis-promoting MEIS/HOX genes. Further, S-(5'-adenosyl)-L-methionine, the common cofactor of histone and DNA methyltransferases, inhibited SCLC metastasis. Thus, our study revealed a concerted epigenetic reprogramming of KMT2C- and DNMT3A-mediated histone and DNA hypomethylation underlying SCLC metastasis, which suggested a potential epigenetic therapeutic vulnerability.
Assuntos
DNA Metiltransferase 3A , Histona-Lisina N-Metiltransferase , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Metiltransferase 3A/genética , Metilases de Modificação do DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metiltransferases/genética , Camundongos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/secundárioRESUMO
In this study, we aimed to reveal the resistance mechanism of hepatocellular carcinoma (HCC) cells to sorafenib by exploring the effect of FNDC5 on sorafenib-induced ferroptosis in HCC cells. We compared the expression level of FNDC5 between sorafenib-resistant and sorafenib-sensitive HCC cell lines and the level of ferroptosis between the groups after treatment with sorafenib. We knocked down FNDC5 in drug-resistant cell lines and overexpressed it in sorafenib-sensitive HCC cell lines to further demonstrate the role of FNDC5 in sorafenib-induced ferroptosis. Using PI3K inhibitors, we revealed the specific mechanism by which FNDC5 functions. In addition, we verified our findings obtained in in vitro experiments using a subcutaneous tumorigenic nude mouse model. The findings revealed that FNDC5 inhibits sorafenib-induced ferroptosis in HCC cells. In addition, FNDC5 activated the PI3K/Akt pathway, which in turn promoted the nuclear translocation of Nrf2 and increased the intracellular antioxidant response, thereby conferring resistance to ferroptosis. Our study provides novel insights for improving the efficacy of sorafenib.
RESUMO
An accurate prediction of the intracranial infiltration tendency and drug response of individual glioblastoma (GBM) cells is essential for personalized prognosis and treatment for this disease. However, the clinical utility of mouse patient-derived orthotopic xenograft (PDOX) models remains limited given current technical constraints, including difficulty in generating sufficient sample numbers from small tissue samples and a long latency period for results. To overcome these issues, we established zebrafish GBM xenografts of diverse origin, which can tolerate intracranial engraftment and maintain their unique histological features. Subsequent single-cell RNA-sequencing (scRNA-seq) analysis confirmed significant transcriptional identity to that of invading GBM microtumors observed in the proportionally larger brains of model animals and humans. Endothelial scRNA-seq confirmed that the zebrafish blood-brain barrier is homologous to the mammalian blood-brain barrier. Finally, we established a rapid and efficient zebrafish PDOX (zPDOX) model, which can predict long-term outcomes of GBM patients within 20â days. The zPDOX model provides a novel avenue for precision medicine of GBM, especially for the evaluation of intracranial infiltration tendency and prediction of individual drug sensitivity.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioblastoma/patologia , Xenoenxertos , Humanos , Mamíferos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-ZebraRESUMO
Tokay Gecko (Gekko gecko) is a rare and endangered medicinal animal in China. Its dry body has been used as an anti-asthmatic agent for two thousand years. To date, the genome and transcriptome of this species remain poorly understood. Here, we adopted single molecule real-time (SMRT) sequencing to obtain full-length transcriptome data and characterized the transcriptome structure. We identified 882,273 circular consensus (CCS) reads, including 746,317 full-length nonchimeric (FLNC) reads. The transcript cluster analysis revealed 212,964 consensus sequences, including 203,994 high-quality isoforms. In total, 111,372 of 117,888 transcripts were successfully annotated against eight databases (Nr, eggNOG, Swiss-Prot, GO, COG, KOG, Pfam and KEGG). Furthermore, 23,877 alternative splicing events, 169,128 simple sequence repeats (SSRs), 10,437 lncRNAs and 7,932 transcription factors were predicted across all transcripts. To our knowledge, this report is the first to document the G. gecko transcriptome using SMRT sequencing. The full-length transcript data might accelerate transcriptome research and lay the foundation for further research on G. gecko.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lagartos/genética , Transcriptoma , Processamento Alternativo/genética , Animais , Genoma , Repetições de Microssatélites/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Fatores de Transcrição/genéticaRESUMO
BACKGROUND AND AIMS: Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown. APPROACH AND RESULTS: Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids. CONCLUSIONS: Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.
Assuntos
Síndrome de Alagille , Ductos Biliares Extra-Hepáticos , Ductos Biliares Intra-Hepáticos , Proteínas de Ligação ao Cálcio , Proteína Jagged-1 , Regeneração Hepática/fisiologia , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Animais , Ductos Biliares Extra-Hepáticos/crescimento & desenvolvimento , Ductos Biliares Extra-Hepáticos/fisiologia , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Ductos Biliares Intra-Hepáticos/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Transdiferenciação Celular , Modelos Animais de Doenças , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Epileptic seizure detection is of great significance in the diagnosis of epilepsy and relieving the heavy workload of visual inspection of electroencephalogram (EEG) recordings. This paper presents a novel method for seizure detection using the Stein kernel-based sparse representation (SR) for EEG recordings. Different from the traditional SR scheme that works with vector data in Euclidean space, the Stein kernel-based SR framework is constructed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Due to the non-Euclidean geometry of the Riemannian manifold, the Stein kernel on the manifold permits the embedding of the manifold in a high-dimensional reproducing kernel Hilbert space (RKHS) to perform SR. In the Stein kernel-based SR framework, EEG samples are described by SPD matrices in the form of covariance descriptors (CovDs). Then, a test EEG sample is sparsely represented on the training set, and the test sample is classified as a member of the class, which leads to the minimum reconstructed residual. Finally, by using three widely used EEG datasets to evaluate the detection performance of the proposed method, the experimental results demonstrate that it achieves good classification accuracy on each dataset. Furthermore, the fast computational speed of the Stein kernel-based SR also meets the basic requirements for real-time seizure detection.
Assuntos
Algoritmos , Epilepsia , Eletroencefalografia , Humanos , ConvulsõesRESUMO
Chromosome copy-number variations are a hallmark of cancer. Among them, the prevalent chromosome 17p deletions are associated with poor prognosis and can promote tumorigenesis more than TP53 loss. Here, we use multiple functional genetic strategies and identify a new 17p tumor suppressor gene (TSG), plant homeodomain finger protein 23 (PHF23). Its deficiency impairs B-cell differentiation and promotes immature B-lymphoblastic malignancy. Mechanistically, we demonstrate that PHF23, an H3K4me3 reader, directly binds the SIN3-HDAC complex through its N-terminus and represses its deacetylation activity on H3K27ac. Thus, the PHF23-SIN3-HDAC (PSH) complex coordinates these two major active histone markers for the activation of downstream TSGs and differentiation-related genes. Furthermore, dysregulation of the PSH complex is essential for the development and maintenance of PHF23-deficient and 17p-deleted tumors. Hence, our study reveals a novel epigenetic regulatory mechanism that contributes to the pathology of 17p-deleted cancers and suggests a susceptibility in this disease. SIGNIFICANCE: We identify PHF23, encoding an H3K4me3 reader, as a new TSG on chromosome 17p, which is frequently deleted in human cancers. Mechanistically, PHF23 forms a previously unreported histone-modifying complex, the PSH complex, which regulates gene activation through a synergistic link between H3K4me3 and H3K27ac.This article is highlighted in the In This Issue feature, p. 1.
Assuntos
Aberrações Cromossômicas , Deleção Cromossômica , Transformação Celular Neoplásica/genética , Cromossomos , Epigênese Genética , Proteínas de Homeodomínio , HumanosRESUMO
Regenerative capacity is frequently impaired in aged organs. Stress to aged organs often causes scar formation (fibrosis) at the expense of regeneration. It remains to be defined how hematopoietic and vascular cells contribute to aging-induced regeneration to fibrotic transition. Here, we find that aging aberrantly reprograms the crosstalk between hematopoietic and vascular cells to impede the regenerative capacity and enhance fibrosis. In aged lung, liver, and kidney, induction of Neuropilin-1/hypoxia-inducible-factor 2α (HIF2α) suppresses anti-thrombotic and anti-inflammatory endothelial protein C receptor (EPCR) pathway, leading to formation of pro-fibrotic platelet-macrophage rosette. Activated platelets via supplying interleukin 1α synergize with endothelial-produced angiocrine chemokine to recruit fibrogenic TIMP1high macrophages. In mouse models, genetic targeting of endothelial Neuropilin-1-HIF2α, platelet interleukin 1α, or macrophage TIMP1 normalized the pro-fibrotic hematopoietic-vascular niche and restored the regenerative capacity of old organs. Targeting of aberrant endothelial node molecules might help propel "regeneration without scarring" in the repair of multiple organs.
Assuntos
Envelhecimento/metabolismo , Fibrose/metabolismo , Nicho de Células-Tronco , Animais , Camundongos , Camundongos TransgênicosRESUMO
[This corrects the article DOI: 10.18632/oncotarget.13687.].