Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(22): 2776-2779, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596281

RESUMO

A mannose-modified perylene monoimide derivative PMI-Man was developed, which shows highly selective binding to double-stranded DNA molecules, potent live/dead cell imaging, and histological imaging via both confocal and light microscopies. This approach can be used to develop a universal colorful staining method for human tissues for both confocal and light microscopies.


Assuntos
DNA/análise , Perileno/química , Linhagem Celular , Humanos , Microscopia Confocal , Análise Espectral/métodos
2.
ACS Macro Lett ; 8(4): 381-386, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35651141

RESUMO

Under high concentrations, strong pressure, and low temperature, fluorophores usually exhibit the fluorescence quenching phenomenon. Of significance, the development of aggregation-induced emission (AIE) and pressure-induced emission (PIE) fluorophores has perfectly prevented fluorescence quenching under high concentrations and strong pressure. However, cooling-induced fluorescence quenching in water is still an urgent problem. In this paper, cooling-induced emission (CIE) enhancement based on a biperylene monoimide (BPMI) derivative, BPMI-18Lac, with a conjugated lactose-based glycodendrimer was developed. BPMI-18Lac, as a non-AIE molecule, exhibited the CIE phenomenon with a fluorescent intensity increasing 7-fold when the temperature decreased from 80 to -40 °C. The mechanism was due to the inhibition of the intramolecular electron interactions between the perylene monoimide moieties linked by the C-C single bond. In addition, BPMI-18Lac, as a multivalent glycodendrimer, showed selective fluorescence imaging for HepG 2 cells through the ASGP receptor on the cell surface. Importantly, this work developed a water-soluble CIE molecule for potential application below freezing temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA