Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Ann Med ; 56(1): 2313062, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354691

RESUMO

BACKGROUND: The effectiveness of nirmatrelvir-ritonavir has mainly been shown in non-hospitalized patients with mild-to-moderate coronavirus disease 2019 (COVID-19). The real-world effectiveness of nirmatrelvir-ritonavir urgently needs to be determined using representative in-hospital patients with COVID-19 during the Omicron wave of the pandemic. METHODS: We performed a multicentre, retrospective study in five Chinese PLA General Hospital medical centers in Beijing, China. Patients hospitalized with COVID-19 from 10 December 2022 to 20 February 2023 were eligible for inclusion. A 1:1 propensity score matching was performed between the nirmatrelvir-ritonavir group and the control group. RESULTS: 1010 recipients of nirmatrelvir-ritonavir and 1010 matched controls were finally analyzed after matching. Compared with matched controls, the nirmatrelvir-ritonavir group had a lower incidence rate of all-cause death (4.6/1000 vs. 6.3/1000 person-days, p = 0.013) and a higher incidence rate of clinical improvement (47.6/1000 vs. 45.8/1000 person-days, p = 0.012). Nirmatrelvir-ritonavir was associated with a 22% lower all-cause mortality and a 14% higher incidence of clinical improvement. Initiation of nirmatrelvir-ritonavir within 5 days after symptom onset was associated with a 50% lower mortality and a 26% higher clinical improvement rate. By contrast, no significant associations were identified among patients receiving nirmatrelvir-ritonavir treatment more than 5 days after symptom onset. Nirmatrelvir-ritonavir was also associated with a 50% increase in survival days and a 12% decrease in days to clinical improvement. CONCLUSION: Among hospitalized patients with COVID-19 during the Omicron wave in Beijing, China, the early initiation of nirmatrelvir-ritonavir was associated with clinical benefits of lowering mortality and improving clinical recovery.


Assuntos
COVID-19 , Lactamas , Leucina , Nitrilas , Prolina , Ritonavir , Humanos , Estudos Retrospectivos , Pequim , Ritonavir/uso terapêutico , Tratamento Farmacológico da COVID-19 , China/epidemiologia , Antivirais/uso terapêutico
2.
Nat Commun ; 15(1): 666, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253587

RESUMO

Keen desires for artificial mimicry of biological polymers and property improvement of synthesized ones have triggered intensive explorations for sequence-controlled copolymerization. However, conventional synthesis faces great challenges to achieve this goal due to the strict requirements on reaction kinetics of comonomer pairs and tedious synthetic processes. Here, sequence-controlled alternating copolymerization with molecular precision is realized on surface. The stoichiometric control serves as a thermodynamic strategy to steer the polymerization selectivity, which enables the selective alternating organometallic copolymerization via intermolecular metalation of 4,4"-dibromo-p-terphenyl (P-Br) and 2,5-diethynyl-1,4-bis(phenylethynyl)benzene (A-H) with Ag adatoms on Ag(111) at P-Br: A-H = 2, as verified by scanning tunneling microscopy and density functional theory studies. In contrast, homopolymerization yield increases as the stoichiometric ratio deviates from 2. The microscopic characterizations rationalize the mechanism, providing a delicate explanation of the stoichiometry-dependent polymerization. These findings pave a way to actualizing an efficient sequence control of copolymerization by surface chemistry.

3.
BMC Infect Dis ; 24(1): 57, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191304

RESUMO

BACKGROUND AND AIM: Two oral antivirals (Nirmatrelvir- ritonavir and Azvudine) are widely used in China practice during the Omicron wave of the pandemic. However, little evidence regarding the real-world effectiveness of these two oral antivirals in in-hospital patients. We aimed to evaluate the clinical effectiveness of nirmatrelvir-ritonavir versus azvudine among adult hospitalized patients with COVID-19. METHODS: This retrospective cohort study used data from three Chinese PLA General Hospital medical centres. Hospitalized patients with COVID-19 treated with azvudine or nirmatrelvir-ritonavir from Dec 10, 2022, to February 20, 2023, and did not require invasive ventilation support on admission were eligible for inclusion. RESULTS: After exclusions and propensity-score matching, the final analysis included 486 azvudine recipients and 486 nirmatrelvir-ritonavir recipients. By 28 days of initiation of the antivirus treatment, the crude incidence rate of all-cause death was similar in both types of antivirus treatment (nirmatrelvir-ritonavir group 2.8 events 1000 person-days [95% CI, 2.1-3.6] vs azvudine group 3.4 events/1000 person-days [95% CI, 2.6-4.3], P = 0.38). Landmark analysis showed that all-cause death was lower in the nirmatrelvir-ritonavir (3.5%) group than the azvudine (6.8%, P = 0.029) within the initial 10-day admission period, while no significant difference was observed for results between 10 and 28 days follow-up. There was no significant difference between the nirmatrelvir-ritonavir group and the azvudine group in cumulative incidence of the composite disease progression event (8.6% with nirmatrelvir-ritonavir vs. 10.1% with azvudine, HR, 1.22; 95% CI 0.80-1.86, P = 0.43). CONCLUSION: Among patients hospitalized with COVID-19 during the omicron wave in Beijing, similar in-hospital clinical outcomes on 28 days were observed between patients receiving nirmatrelvir-ritonavir and azvudine. However, it is worth noticing that nirmatrelvir-ritonavir appears to hold an advantage over azvudine in reducing early mortality. Further randomized controlled trials are needed to verify the efficacy of those two antivirus medications especially in early treatment.


Assuntos
COVID-19 , Adulto , Humanos , Estudos Retrospectivos , Ritonavir/uso terapêutico , Tratamento Farmacológico da COVID-19 , Pacientes Internados , Hospitais Gerais , Antivirais/uso terapêutico
4.
Angew Chem Int Ed Engl ; 62(49): e202314900, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851470

RESUMO

Stable carbon-based polyradicals exhibiting strong spin-spin coupling and slow depolarization processes are particularly attractive functional materials. A new molecular motif synthesized by a convenient method that allows the integration of stable, high-spin radicals to (hetero)aromatic polycycles has been developed, as illustrated by a non-Kekulé diradical showing a triplet ground state with long persistency (τ1/2 ≈31 h) in air. Compared to the widely used 1,3-phenylene, the newly designed (diaza)pyrene-4,10-diyl moiety is for the first time demonstrated to confer ferromagnetic (FM) spin coupling, allowing delocalized non-disjoint SOMOs. With the X-ray crystallography unambiguously proving the diradical structure, the triplet ground state was thoroughly characterized. A large ΔES-T of 1.1 kcal/mol, proving the strong FM coupling effect, was revealed consistently by superconducting quantum interference device (SQUID) measurements and variable-temperature electron paramagnetic resonance (EPR) spectroscopy, while the zero-field splitting and triplet nutation characters were examined by continuous-wave and pulsed EPR spectroscopy. A millisecond spin-lattice relaxation time was also detected. The current study not only offers a new molecular motif enabling FM coupling between carbon-based spins, but more importantly presents a general method for installing stable polyradicals into functional π-systems.

5.
Angew Chem Int Ed Engl ; 61(37): e202208635, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35843908

RESUMO

A molecule featuring two distinct cooperatively grown J-aggregates is investigated. Interestingly, when cooling a hot monomer solution, the thermodynamically less stable J1 is exclusively formed even at a particularly slowed temperature dropping rate, which transforms to the more stable J2 at room temperature with very slow kinetics. This observation is ascribed to the differed nucleus sizes of J1 and J2 . During the cooling process, smaller J1 nuclei are formed first at a higher temperature, favored by the entropy effect. At intermediate temperatures, the elongation of J1 out-competes the nucleation of J2 . Then, below the elongation temperature of J2 , the formation of this thermodynamically stable aggregate is hindered kinetically, due to the depletion of monomer by the slow dissociation of J1 . Additional evidence proving the larger nucleus size of J2 is also identified with the varied-temperature spectral analyses and mathematic simulations.


Assuntos
Temperatura Alta , Cinética , Transição de Fase , Temperatura
6.
Adv Mater ; 34(27): e2200361, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35315948

RESUMO

State-of-art Y-series polymer acceptors are typically based on a mono-thiophene linker, which can cause some twisted molecular conformations and thus limit the performance of all-polymer solar cells (all-PSCs). Here, a high-performance polymer acceptor based on vinylene linkers is reported, which leads to surprising changes in the polymers' molecular conformations, optoelectronic properties, and enhanced photovoltaic performance. It is found that the polymer acceptors based on thiophene or bithiophene linkers (PY-T-γ and PY-2T-γ) display significant molecular twisting between end-groups and linker units, while the vinylene-based polymer (PY-V-γ) exhibits a more coplanar and rigid molecular conformation. As a result, PY-V-γ demonstrates a better conjugation and tighter interchain stacking, which results in higher mobility and a reduced energetic disorder. Furthermore, detailed morphology investigations reveal that the PY-V-γ-based blend exhibits high domain purity and thus a better fill factor in its all-PSCs. With these, a higher efficiency of 17.1% is achieved in PY-V-γ-based all-PSCs, which is the highest efficiency reported for binary all-PSCs to date. This work demonstrates that the vinylene-linker is a superior unit to build polymer acceptors with more coplanar and rigid chain conformation, which is beneficial for polymer aggregation and efficient all-PSCs.

7.
Chemistry ; 28(24): e202104598, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35212059

RESUMO

Polycyclic aromatic hydrocarbon (PAH) structures with suitable electron-withdrawing groups are useful building blocks for developing optical and electron-transporting materials. Here, we report the application of a double benzannulation process to the syntheses of PAH diimides with enlarged π-frameworks featuring a central anthracene moiety. The preparations are realized by copper-catalyzed [4+2] cycloaddition of ethynyl-substituted aromatic dicarboximide to 2,5-bis(phenylethynyl)terephthalaldehyde, followed by intramolecular photocyclization or direct arylation via Heck cross coupling. A central symmetric benzo[1,2-k:4,5-k']-bis(fluoranthene)-3,4,12,13-tetracarboxyl diimide (BFDI) is acquired, with the single crystal structure revealing its completely planar polycyclic skeleton. Such a shape-persistent PAH expectedly exhibits a tendency to stack face-to-face and forms J-aggregates. Moreover, BFDI can be difunctionalized site-selectively at the reactive 9 and 10 positions of the anthracene unit and then applied to prepare conjugated polymers. When coupled with 1,4-diketopyrrolo[3,4-c]-pyrrole (DPP) via thiophene and dithiophene linkers, two polymers with significantly broadened absorption bands extended to the near-infrared regime are obtained, evidencing the effective π-conjugative extension ability of BFDI unit.

8.
Appl Environ Microbiol ; 88(3): e0192121, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818106

RESUMO

Legionella pneumophila widely exists in natural and artificial water environments, which enables it to infect people. L. pneumophila infection causes Legionnaires' disease (LD), which is a significant but relatively uncommon respiratory infection. Approximately 90% of LD is caused by L. pneumophila serogroup 1 (Lp1). Meteorological conditions may affect the infectivity and virulence of Lp1, but the exact relationship between them is still unclear. In this study, we evaluated the virulence of Lp1 by screening of total 156 Lp1 strains isolated from cooling tower water in different regions of China by detecting their abilities to activate NF-κB signaling pathway in vitro. In addition, we screened the distribution of some selected virulence genes in these strains. The virulence, virulence gene distribution, and the meteorological factors were analyzed. We found that both the virulence and the distribution of virulence genes had a certain regional and meteorological correlation. Although the loss of several virulence genes showed significant effects on the virulence of Lp1 strains, the distribution of virulence genes had very limited effects on the virulence of Lp1. IMPORTANCE LD is likely to be underrecognized in many countries. Due to the widespread existence of L. pneumophila in natural and artificial water environments and to the lack of cross-protection against different strains, L. pneumophila is a potentially serious threat to human health. Therefore, effective monitoring of the virulence of L. pneumophila in the water environment is very important to prevent and control the prevalence of LD. Understanding the virulence of L. pneumophila can not only help us to predict the risk of possible outbreaks in advance but can also enable more targeted clinical treatment. This study highlights the importance of understanding the epidemiology and ecology of L. pneumophila isolated from public facilities in terms of public health and biology. Due to the potential for water sources to harbor and disseminate L. pneumophila and to the fact that geographical conditions influence the virulence of L. pneumophila, timely and accurate L. pneumophila virulence surveillance is urgently needed.


Assuntos
Legionella pneumophila , Doença dos Legionários , China/epidemiologia , Surtos de Doenças , Ecologia , Humanos , Doença dos Legionários/epidemiologia , Microbiologia da Água
9.
J Am Chem Soc ; 143(42): 17690-17700, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637282

RESUMO

To investigate the capability of π-π stacking motifs to enable spin-spin coupling, we designed and synthesized three pairs of regio-isomers featuring two radical moieties joined by a [2.2]paracyclophane (CP) unit. By fusing indeno units to CP, two partially stacked fluorene radicals are covalently linked, exhibiting evident antiferromagnetic (AFM) coupling regardless of the orientation of two spins. Remarkably, while possessing high diradical indices of 0.8 and 0.9, the two molecules demonstrate good air stability by virtue of their singlet ground state. Single crystals help unravel the structural basis of their AFM coupling behaviors. When two radical centers are arranged at the pseudometa-positions around CP, the face-to-face stacked phenylene rings intrinsically confer orbital interactions that promote AFM coupling. On the other hand, if two radicals are directed in the pseudopara-orientation, significant orbital overlapping is observed between the radical centers (i.e., C9 of fluorene) and the aromatic carbons laid on the side, rendering AFM coupling between the two spins. In contrast, when two fluorene radicals are tethered to CP via C9 through a single C-C bond, ferromagnetic (FM) coupling is manifested by both diradical isomers featuring pseudometa- and pseudopara-connectivity. With minimal spin distributed on CP and thus limited contribution from π-π stacking, their spin-spin coupling properties are more similar to a pair of nitroxide diradical analogues, in which the two spins are dominantly coupled via through-space interactions. From these results, important conclusions are elucidated such as that although through-space interactions may confer FM coupling, with weakened strength shown by PAH radicals due to their lower polarity, face-to-face stacked π-frameworks tend to induce AFM coupling, because favorable orbital interactions are readily achieved by PAH systems hosting delocalized spins that are capable of adopting varied stacking motifs.

10.
Chem Asian J ; 16(14): 1893-1896, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34014616

RESUMO

Luminophores with tunable emission properties are appealing due to various applications. Among those properties, thermally activated delayed fluorescence (TADF) has been attracting enormous research interests. Herein, we synthesized a 9,9'-spirobifluorene based homo-conjugated molecule 1, which connects a diphenylamino moiety as electron donor and a naphthalimide group as electron acceptor via 2,2'-positions of spirofluorene. Compound 1 displays dual emission behaviour with both blue and orange fluorescence. The one orange fluorescence around 555 nmshows sensitivity to oxygen and a prolonged lifetime of 284 ns in degassed toluene. Such characteristics imply TADF nature for this emission from a charge-transfer excited state. The other emission at 440 nm with blue colour displayed resistance to oxygen quenching and a normal fluorescence lifetime of 1.5 ns. Compared with control molecule, this emission band is assigned as conventional fluorescence from a localized excited state. In addition, dual emission property allows molecule 1 to be modulated to emit white photoluminescence in thin film with a CIE color coordinate of (0.25, 0.33).

11.
Angew Chem Int Ed Engl ; 60(18): 10137-10146, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33501698

RESUMO

Polymerization sites of small molecule acceptors (SMAs) play vital roles in determining device performance of all-polymer solar cells (all-PSCs). Different from our recent work about fluoro- and bromo- co-modified end group of IC-FBr (a mixture of IC-FBr1 and IC-FBr2), in this paper, we synthesized and purified two regiospecific fluoro- and bromo- substituted end groups (IC-FBr-o & IC-FBr-m), which were then employed to construct two regio-regular polymer acceptors named PYF-T-o and PYF-T-m, respectively. In comparison with its isomeric counterparts named PYF-T-m with different conjugated coupling sites, PYF-T-o exhibits stronger and bathochromic absorption to achieve better photon harvesting. Meanwhile, PYF-T-o adopts more ordered inter-chain packing and suitable phase separation after blending with the donor polymer PM6, which resulted in suppressed charge recombination and efficient charge transport. Strikingly, we observed a dramatic performance difference between the two isomeric polymer acceptors PYF-T-o and PYF-T-m. While devices based on PM6:PYF-T-o can yield power conversion efficiency (PCE) of 15.2 %, devices based on PM6:PYF-T-m only show poor efficiencies of 1.4 %. This work demonstrates the success of configuration-unique fluorinated end groups in designing high-performance regular polymer acceptors, which provides guidelines towards developing all-PSCs with better efficiencies.

12.
Chem Sci ; 11(21): 5565-5571, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874500

RESUMO

By integrating azulene with a quinoid moiety, a novel non-alternant polycyclic aromatic hydrocarbon molecule BCHF1 exhibiting manifold zwitterionic, quinoidal and diradical behaviors is designed and synthesized. Its zwitterionic feature is evidenced by the changes shown by the 1H-NMR and absorption spectra when the molecule undergoes reversible protonation and deprotonation reactions at varied pH. The diradical facet, manifesting a small singlet-triplet energy gap (ΔE S-T), is characterized with a paramagnetic resonance signal detected by the EPR spectroscopy at room temperature. As the diradical properties are not observed in the protonated form, BCHF1+H+ , a pH-controlled reversible magnetic switching behavior is illustrated by monitoring the on and off cycles of EPR signals upon successively adding bases and acids to a solution or exposing a thin film of BCHF1+H+ to base vapor followed by acid vapor.

13.
Adv Sci (Weinh) ; 7(14): 2000444, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32714755

RESUMO

Short-wavelength infrared (SWIR) photodetection and visualization has profound impacts on different applications. In this work, a large-area organic SWIR photodetector (PD) that is sensitive to SWIR light over a wavelength range from 1000 to 1600 nm and a SWIR visualization device that is capable of upconverting SWIR to visible light are developed. The organic SWIR PD, comprising an organic SWIR sensitive blend of a near-infrared polymer and a nonfullerene n-type small molecule SWIR dye, demonstrates an excellent capability for real-time heart rate monitoring, offering an attractive opportunity for portable and wearable healthcare gadgets. The SWIR-to-visible upconversion device is also demonstrated by monolithic integration of an organic SWIR PD and a perovskite light-emitting diode, converting SWIR (1050 nm) to visible light (516 nm). The most important attribute of the SWIR visualizing device is its solution fabrication capability for large-area SWIR detection and visualization at a low cost. The results are very encouraging, revealing the exciting large-area SWIR photodetection and visualization for a plethora of applications in environmental pollution, surveillance, bioimaging, medical, automotive, food, and wellness monitoring.

14.
Angew Chem Int Ed Engl ; 59(35): 14854-14860, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32436361

RESUMO

By harnessing a highly efficient metal-catalyzed tandem cycloaddition reaction as the key benzannulation step, a series of cyclopolyarene nanorings of varied sizes are obtained from poly(arylene-butadiynylene) macrocyclic precursors, which can be synthesized relatively conveniently. Interestingly, due to the nonparallel bond connectivity of the repeat unit, unique Möbius topology is manifested by the cyclopolyarene nanorings composed of an odd number of repeat units, whereas cylindrical tubular structures with radial conjugation are formed with those consisting of an even number of repeat units.

15.
Angew Chem Int Ed Engl ; 59(35): 14903-14909, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32441469

RESUMO

The mechanism of aggregation-induced emission, which overcomes the common aggregation-caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward-Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.

16.
J Org Chem ; 85(9): 5761-5770, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216268

RESUMO

With the aim to achieve air-stable polyradical species manifesting strong spin coupling, synthetic endeavors are made toward triradical molecules featuring a truxene-triyl skeleton. Commonly used steric-hindering side groups such as 2,4,6-trichlorophenyl and 9-anthracenyl are both found to be incompetent at stabilizing the targeted truxene triradical, which appears to be elusive from isolation and characterization. Nonetheless, single-crystal structures of adducts formed by relevant radicals are obtained, which strongly suggests the transient existence of the designed triradicals. Finally, a truxene triradical comprising 1-anthracenyl along with two 9-anthracenyl substituents is successfully isolated and found to exhibit decent stability in air. We propose that because of the smaller dihedral angle assumed by 1-anthracenyl with respect to the plane of truxene-triyl, more effective π-conjugation allows the spin density to be more widely delocalized and distributed to the anthracenyl side groups. Thus, higher stability is gained by the triradical molecule.

17.
Nat Commun ; 10(1): 2545, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186417

RESUMO

Dissymmetric reactions, which enable differentiated functionalization of equivalent sites within one molecule, have many potential applications in synthetic chemistry and materials science, but they are very challenging to achieve. Here, the dissymmetric reaction of 1,4-dibromo-2,5-diethynylbenzene (2Br-DEB) on Ag(111) is realized by using a stepwise activation strategy, leading to an ordered two-dimensional organometallic network containing both alkynyl-silver-alkynyl and alkynyl-silver-phenyl nodes. Scanning tunneling microscopy and density functional theory calculations are employed to explore the stepwise conversion of 2Br-DEB, which starts from the H-passivation of one Br-substituted site at 300 K in accompaniment with an intermolecular reaction to form one-dimensional organometallic chains containing alkynyl-silver-alkynyl nodes. Afterwards, the other equivalent Br-substituted site undergoes metalation reaction at 320-450 K, resulting in transformation of the chains into the binodal networks. These findings exemplify the achievement of the dissymmetric reaction and its practical application for controlled fabrications of complicated yet ordered nanostructures on a surface.

18.
ACS Appl Mater Interfaces ; 11(7): 6970-6977, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30668087

RESUMO

Partial flattening of the spatially extended molecular scaffold has been employed as an effective tactic to improve the device performance of a perylenediimide (PDI)-based small-molecule acceptor because the less twisted yet not completely planar molecular geometry is anticipated to improve the molecular packing and thereby attain a more suitable balance between the carrier transport ability and phase domain size. A small-molecule acceptor BF-PDI comprising four α-substituted PDI units attached around a 9,9'-bifluorenylidene (BF) central moiety is designed and studied in polymer solar cells. The BF group is deemed a ring-fused analogue of the tetraphenylethylene (TPE) unit. Due to the less twisted and better conjugated BF skeleton, BF-PDI displays more delocalized lowest unoccupied molecular orbital. By virtue of both the electronic and steric effects, BF-PDI is suggested to bring about superior intermolecular stacking and donor-acceptor phase separation morphology in blend films. Indeed, the experimental results show that BF-PDI displays improved charge transport ability and a higher power-conversion efficiency of 8.05% than that of TPE-PDI. Grazing-incidence wide-angle X-ray diffraction and resonant soft X-ray scattering confirm the more compact and ordered molecular packing as well as smaller domain sizes in the P3TEA/BF-PDI blend.

19.
J Phys Chem A ; 122(35): 6963-6969, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30095922

RESUMO

The photodynamic properties involving both intra- and intermolecular triplet energy transfers (ET) of a bichromophoric photosensitizer having a tris-cyclometalated Ir(III) tethered with a pyrene derivative are studied. Due to the triplet energy gap of the two chromophores, a reversible intramolecular triplet ET equilibrium is quickly established upon photoexcitation, with the triplet exciton mainly residing on the acceptor side in the photostationary state. By virtue of the very small decay rate of triplet pyrene, a considerably extended triplet lifetime (2 ms) is observed. Next, the intermolecular triplet-triplet ET properties are investigated. Using steady-state and time-resolved spectroscopy, the ET rate constants from the Ir complex and pyrene unit in the sensitizer to an external triplet acceptor (unattached, free pyrene derivative) in solution are found to be around 109 s-1 and 108 M -1 s-1, respectively. In spite of a lower ET rate constant, the tethered pyrene serves as the main intermolecular ET channel because of the large, favorable intramolecular ET equilibrium ( K ∼ 103). Importantly, this cascade ET process, from Ir complex to linked pyrene, and then to free pyrene, offers an overall improved ET efficiency than a direct ET from Ir complex to free pyrene, by virtue of the much smaller spontaneous decay rate compared to that of the metal complex. Finally, the more efficient ET ability is demonstrated experimentally by applying the molecule as sensitizer in a triplet-triplet annihilation upconversion. The bichromophoric sensitizer achieved upconverted emission intensity 5 times higher than a monochromophoric Ir-complex analogue.

20.
J Phys Chem A ; 122(33): 6673-6682, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30053373

RESUMO

A heavy-atom-free triplet sensitizer suitable for triplet-triplet annihilation-based photon upconversion was developed from the thermally activated delayed fluorescence (TADF) molecule 4CzPN by covalently tethering a pyrene derivative (DBP) as a triplet acceptor. The triplet exciton produced by 4CzPN is captured by the intramolecular pyrenyl acceptor and subsequently transferred via intermolecular triplet-triplet energy transfer (TTET) to freely diffusing pyrenyl acceptors in toluene. Transient absorption and time-resolved photoluminescence spectroscopy were employed to examine the dynamics of both the intra- and intermolecular TTET processes, and the results indicate that the intramolecular energy transfer from 4CzPN to DBP is swift, quantitative, and nearly irreversible. The reverse intersystem crossing is suppressed while intersystem crossing remains efficient, achieving high triplet yield and long triplet lifetime simultaneously. The ultralong excited state lifetime characteristic of the DBP triplet was shown to be crucial for enhancing the intermolecular TTET efficiency and the subsequent triplet-triplet annihilation photochemistry. It was also demonstrated that with the long triplet lifetime of the tethered DBP, TTET was enabled under low free acceptor concentrations and/or with sluggish molecular diffusion in polymer matrixes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA