Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1399744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933104

RESUMO

Intestinal ischemia/reperfusion is a prevalent pathological process that can result in intestinal dysfunction, bacterial translocation, energy metabolism disturbances, and subsequent harm to distal tissues and organs via the circulatory system. Acute lung injury frequently arises as a complication of intestinal ischemia/reperfusion, exhibiting early onset and a grim prognosis. Without appropriate preventative measures and efficacious interventions, this condition may progress to acute respiratory distress syndrome and elevate mortality rates. Nonetheless, the precise mechanisms and efficacious treatments remain elusive. This paper synthesizes recent research models and pertinent injury evaluation criteria within the realm of acute lung injury induced by intestinal ischemia/reperfusion. The objective is to investigate the roles of pathophysiological mechanisms like oxidative stress, inflammatory response, apoptosis, ferroptosis, and pyroptosis; and to assess the strengths and limitations of current therapeutic approaches for acute lung injury stemming from intestinal ischemia/reperfusion. The goal is to elucidate potential targets for enhancing recovery rates, identify suitable treatment modalities, and offer insights for translating fundamental research into clinical applications.

2.
Eur J Pharmacol ; 963: 176219, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38040079

RESUMO

Sepsis-associated lung injury often coexists with intestinal dysfunction. Butyrate, an essential gut microbiota metabolite, participates in gut-lung crosstalk and has immunoregulatory effects. This study aims to investigate the effect and mechanism of sodium butyrate (NaB) on lung injury. Sepsis-associated lung injury was established in mice by cecal ligation and puncture (CLP). Mice in treatment groups received NaB gavage after surgery. The survival rate, the oxygenation index and the lung wet-to-dry weight (W/D) ratio were calculated respectively. Pulmonary and intestinal histologic changes were observed. The total protein concentration in bronchoalveolar lavage fluid (BALF) was measured, and inflammatory factors in serum and BALF were examined. Diamine oxidase (DAO), lipopolysaccharide (LPS), and surfactant-associated protein D (SP-D) levels in serum and amphiregulin in lung tissue were assessed. Intercellular junction protein expression in the lung and intestinal tissues were examined. Changes in immune cells were analyzed. NaB treatment improved the survival rate, the oxygenation index and the histologic changes. NaB decreased the W/D ratio, total protein concentration, and the levels of proinflammatory cytokines, as well as SP-D, DAO and LPS, while increased the levels of anti-inflammatory cytokines and amphiregulin. The intercellular junction protein expression were improved by NaB. Furthermore, the CD4+/CD8+ T-cell ratio and the proportion of CD4+Foxp3+ regulatory T cells (Tregs) were increased by NaB. Our data suggested that NaB gavage effectively improved the survival rate and mitigated lung injury in CLP mice. The possible mechanism was that NaB augmented CD4+Foxp3+ Tregs and enhanced the barrier function of the gut and the lung.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/complicações , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Ácido Butírico/metabolismo , Anfirregulina/metabolismo , Linfócitos T Reguladores/metabolismo , Lipopolissacarídeos/metabolismo , Proteína D Associada a Surfactante Pulmonar/metabolismo , Pulmão/patologia , Citocinas/metabolismo , Fatores de Transcrição/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Fatores de Transcrição Forkhead/metabolismo
3.
J Neuroimmune Pharmacol ; 18(3): 366-382, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37318680

RESUMO

Ischemic stroke is a cerebrovascular lesion caused by local ischemia and hypoxia. Diabetes mellitus (DM) is a chronic inflammatory disease that disturbs immune homeostasis and predisposes patients to ischemic stroke. The mechanism by which DM exacerbates stroke remains unclear, although it may involve disturbances in immune homeostasis. Regulatory T cells (Tregs) play a regulatory role in many diseases, but the mechanism of Tregs in diabetes complicated by stroke remains unclear. Sodium butyrate is a short-chain fatty acid that increases Treg levels. This study examined the role of sodium butyrate in the prognosis of neurological function in diabetic stroke and the mechanism by which Tregs are amplified in the bilateral cerebral hemispheres. We evaluated the brain infarct volume, observed 48-h neuronal injury and 28-day behavioral changes, and calculated the 28-day survival rate in mice. We also measured Treg levels in peripheral blood and brain tissue, recorded changes in the blood‒brain barrier and water channel proteins and neurotrophic changes in mice, measured cytokine levels and peripheral B-cell distribution in bilateral hemispheres and peripheral blood, and examined the polarization of microglia and the distribution of peripheral T-cell subpopulations in bilateral hemispheres. Diabetes significantly exacerbated the poor prognosis and neurological deficits in mice with stroke, and sodium butyrate significantly improved infarct volume, prognosis, and neurological function and showed different mechanisms in brain tissue and peripheral blood. The potential regulatory mechanism in brain tissue involved modulating Tregs/TGF-ß/microglia to suppress neuroinflammation, while that in peripheral blood involved improving the systemic inflammatory response through Tregs/TGF-ß/T cells.

4.
Heliyon ; 9(3): e14337, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938410

RESUMO

Background: Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients. The strong stress response causing by surgical trauma can induce POCD. We hypothesized that stellate ganglion block (SGB) can provide the neuroprotection to POCD by regulating the neuroendocrine response. Methods: Sprague-Dawley male rats, 18-20 months old and weighing 550-650 g were assigned into four groups: sham surgery group (Sham), sham surgery + saline group (Sham + NS), surgery group (Surgery), and surgery + SGB group (Surgery + SGB). The change of body weight, heart rate variability analysis, behavior testing, neuronal damage, inflammatory response, neuroendocrine hormone level were evaluated by their corresponding methods. Results: The results showed that SGB can reduce the number of both types of errors in the postoperative eight-arm maze assay, attenuate neural structural damage, inhibit neuroapoptosis, suppress inflammatory responses, increase the release of neurotrophic factors, accelerate postoperative weight recovery, and promote postoperative recovery in rats. Most importantly, SGB reduced the level of neuroendocrine hormone of TH, Cyp11b1, CRH, and SGB also activated dorsal motor nucleus of vagus (detected by c-fos immunohistochemistry). Conclusions: Our findings indicated that SGB could be a neuroprotective therapy for the cognitive dysfunction induced by exploratory laparotomy model of POCD, which might be attributable for balancing the autonomic nervous system, regulating hypothalamic-pituitary-adrenal (HPA) axis system.

5.
Biomed Res Int ; 2020: 2394734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566670

RESUMO

BACKGROUND: This study investigated the potential therapeutic effects of acupoint catgut embedding (ACE) at ST36 and BL13 on lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) in rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomized into the normal saline (NS group with a sham procedure), lipopolysaccharide (LPS group with a sham procedure), and LPS plus ACE (LPS+ACE with ACE at bilateral BL13 and ST36 acupoints one day before LPS injection) groups. After intratracheal instillation of normal saline or LPS (0.5 mg/kg), all rats were subjected to mechanical ventilation for 4 h. Their blood gas was analyzed before and after lung injury, and their lung pressure-volumes were measured longitudinally. The levels of TNF-α, IL-6, IL-10, and phosphatidylcholine (PC) and total proteins (TP) in bronchial alveolar lavage fluid (BALF) were assessed. Their wet to dry lung weight ratios, histology, myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) levels were measured. Their lung aquaporin 1 (AQP1) and Occludin protein levels were analyzed. RESULTS: LPS administration significantly decreased the ratios of PaO2/FiO2 and pressure-volumes and induced lung inflammation and injury by increased concentrations of TNF-α, IL-6, IL-10, and TP in BALF and MPO and MDA in the lung but decreased PC in BALF and SOD activity in the lungs. LPS also reduced AQP1 and Occludin protein levels in the lung of rats. In contrast, ACE significantly mitigated the LPS-induced lung injury, inflammation, and oxidative stress and preserved the AQP1 and Occludin contents in the lung of rats. CONCLUSIONS: ACE significantly improved respiratory function by mitigating inflammation and oxidative stress and preserving AQP1 and Occludin expression in the lung in a rat model of LPS-induced ARDS.


Assuntos
Pontos de Acupuntura , Categute , Síndrome do Desconforto Respiratório , Animais , Materiais Biocompatíveis/farmacologia , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/química , Pulmão/fisiologia , Complacência Pulmonar/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia
6.
J Cardiovasc Transl Res ; 12(5): 467-477, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30980235

RESUMO

Previous studies proposed that acidic reperfusion may be a protective strategy for myocardial ischemia-reperfusion therapy with potential of clinical transformation. In this study, we investigated whether therapeutic hypercapnia could mimic acidosis postconditioning in isolated hearts with a 30-min left coronary artery ligation-reperfusion model in rats. Therapeutic hypercapnia (inhalation 20% CO2 for 10 min) is cardioprotective with a strict therapeutic time window and acidity: it reduced the infarct ratio and serum myocardial enzyme and increased the myocardial ATP content. Furthermore, mitochondrial morphology damage, the loss of mitochondrial membrane potential, and the formation of mitochondrial permeability transition pore were effectively inhibited, indicating the improvements in mitochondrial function. The expression of the mitochondrial biogenesis regulators was upregulated simultaneously. These findings indicated therapeutic hypercapnia in animals can mimic ex vivo acidosis postconditioning to alleviate myocardial ischemia-reperfusion injury. The effect is related to improvement in mitochondrial function and regulation of the mitochondrial biogenesis pathway.


Assuntos
Acidose , Metabolismo Energético , Hipercapnia , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Biogênese de Organelas , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Preparação de Coração Isolado , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/ultraestrutura , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA