Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29915, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756596

RESUMO

The control precision of the working device has always been a challenging aspect in unmanned excavator research due to the adoption of a triangular drive mode and a complex hydraulic system in the working mechanism. The article focuses on the research of autonomous control for the downward motion of a robotic arm in an unmanned excavator equipped with a regeneration valve. The study aims to achieve precise tracking of fast movement trajectories during operator manipulation, utilizing Model Predictive Control (MPC). Furthermore, the exceptional disturbance rejection capability of the MPC algorithm is demonstrated through interference application. A comprehensive model considering mechanical, hydraulic, and electrical factors is established for the excavator boom. The MPC algorithm is applied to achieve precise control over the boom descent process, providing a foundation for motion control in unmanned excavators. This article presents a theoretical analysis to elucidate the robustness principle of MPC in the descent control of uncertain dynamic arms. By incorporating real parameters, we successfully track predetermined planned paths at different speeds and validate them on a 20-ton hydraulic excavator. The results demonstrate that the MPC control algorithm accurately manipulates the boom descent motion while exhibiting excellent disturbance rejection performance. Compared to PID control algorithms, MPC offers wider target adaptability range and better disturbance rejection performance, making it suitable for rapid application in controlling working devices of unmanned excavators.

2.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214411

RESUMO

The research objective of this paper is to propose a new type of ERSD to solve the problem of the uncontrollable velocity of the claw in the current RSD. Firstly, the working characteristics of the RSD in ASIST are analyzed, and the design scheme of the transmission system of the ERSD is provided. The control system is designed by combining the vector control algorithm with the fuzzy adaptive PID control algorithm. On this basis, the trajectory planning of claw capture velocity is completed. Finally, the dynamics model of the transmission system of the ERSD is built by power bond graph theory, and the system simulation is carried out. The results show that the maximum capture time, velocity, and force were reduced by 47%, 53%, and 80%. In addition, when the ERSD is towing the helicopter, the mechanical claw can still provide good velocity tracking performance under a maximum interference load of 34,000 N.

3.
Sensors (Basel) ; 21(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696090

RESUMO

Active suspension control strategies are a top priority in active suspension system. The current research on active suspension control strategies is mostly focused on two-axle vehicles, and there is less research investigating multi-axle vehicles. Additionally, their effective implementation is dependent on accurate mathematical models, and most of them adopt force feedback control, which is vulnerable to external interference. To solve these problems, this paper proposes an active suspension control strategy based on Inertial Measurement Unit. The multi-axle emergency rescue vehicle is made to be equivalent to a 3-degrees-of-freedom parallel mechanism by using the method of grouping and interconnecting the suspension units of the whole vehicle. The attitude change of the vehicle body was transformed into the servo actuator's displacement by solving the inverse solution of the parallel mechanism position and the action of the servo actuator was driven in reverse according to the displacement obtained. In this way, the vehicle body attitude can be compensated, and the ride comfort and the handling stability of the vehicle can be improved. To verify the effectiveness of the control strategy proposed, the three-axle six vehicle was taken as the research object, the position inverse solution of its equivalent 3-degrees-of-freedom parallel mechanism was deduced, and a high-pass filter was designed. The three-axle vehicle experiment platform integrating active suspension and hydro-pneumatic suspension was built, and the gravel road and slope road experiments were carried out and the results compared with those obtained with hydro-pneumatic suspension. The experiment results showed that, compared with hydro-pneumatic suspension, the active suspension control strategy based on Inertial Measurement Unit proposed in this paper can not only stabilize the body attitude, but also effectively suppress body vibration, improving the ride comfort and handling stability of the vehicle significantly.


Assuntos
Vibração , Desenho de Equipamento , Suspensões
4.
Sensors (Basel) ; 20(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081364

RESUMO

The paper is a continuation of our work on the dynamic load in piezoelectric pumps. In the study, the dynamic load of liquid in the pipelines was proposed as a key factor that limits the output performance of piezoelectric pumps. To decrease the dynamic load, a piezoelectric pump with two elastic chambers was proposed in our previous published work. In this paper, the performance and key parameters of the piezoelectric pump with two elastic chambers were studied through theoretical analyses and experimental tests. After establishing the mathematical model of the piezoelectric pump with two elastic chambers, the paper theoretically analyzed the performance of the pump and the effect of different structural parameters on the performance. Then prototypes with a range of structural parameters were developed and tested. As revealed from the test results, the elastic chamber effectively decreased the dynamic load of the liquid in the pipelines and the flow rate of the prototype with two elastic chambers was higher than that of the prototype with one or no elastic chamber. However, the elastic chamber did not lead to the increase in the maximum output backpressure of the prototype. Adopting an elastic diaphragm exhibiting a smaller stiffness or a larger diameter could help decrease the dynamic load of the liquid. The elastic chamber more significantly impacted the flow rate of the piezoelectric pump with long pipelines. The pump chamber height had a significant effect on the output performance of the piezoelectric pump with two elastic chambers, which is consistent with the conventional piezoelectric pump. At the height of 0.2 mm, the flow rate of the prototype with two elastic chambers was peaked at 7.7 mL/min; at the height of 0.05 mm, the output backpressure reached the highest of 28.2 kPa. The dynamic load could decrease the amplitude of the piezoelectric vibrator, whereas the prototype with two elastic chambers could effectively reduce the impact of dynamic load on the piezoelectric vibrator. The flow rate decreased almost linearly with the backpressure. Under the same backpressure, the flow rate of the prototype with two elastic chambers was higher than that of the prototype without elastic chamber, and the flow rate difference between the two prototypes gradually decreased with the backpressure.

5.
Sensors (Basel) ; 20(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126456

RESUMO

In this paper, an integrated control strategy of position synchronization control for dual-electro-hydraulic actuators with unknown dead-zones is proposed. The unified control scheme consists of two parts: One is adaptive dead-zone inverse controllers of each hydraulic actuator to offset the unknown dead-zones. The other is the linear active disturbance rejection controller (LADRC) for position synchronization error. First, the model of the electro-hydraulic proportional position control system (EPPS) was identified by the forgetting factor recursive least square (FFRLS) algorithm. Next, the model reference dead-zone inverse adaptive controller (MRDIAC) was developed to compensate for the delay of actuator response caused by unknown proportional valve dead-zones. Meanwhile, the validity of the adaptive law was proven by the Lyapunov theory. Therefore, the position control accuracy of each hydraulic actuator is guaranteed. Besides, to improve the precision of position synchronization control of dual-hydraulic actuators, a simple and elegant synchronous error-based LADRC was adopted, which applies the total disturbances design concept to eliminate and compensate for motion coupling rather than cross-coupling technology. The performance of the proposed control solution was investigated through extensive comparative experiments based on a hydraulic test platform. The experimental results successfully demonstrate the effectiveness and practicality of the proposed method.

6.
Micromachines (Basel) ; 11(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751223

RESUMO

As piezoelectric pumps are used in more fields, they are gradually failing to meet the application requirements due to their low output performance. Therefore, improving the output performance of piezoelectric pumps helps to expand their applications. This paper argued that the dynamic load of liquid in the inlet and outlet pipelines was an important factor that weakened the performance of piezoelectric pumps. Therefore, in order to reduce the dynamic load, it was proposed to replace the conventional piezoelectric pump inlet and outlet by an elastic inlet and outlet. After introducing the structure and working principle of elastic inlet and outlet, the mechanism of reducing the dynamic load by elastic inlet and outlet was analyzed. Then, the influence of the elastic cavity height on the performance of the piezoelectric pump was studied from both fluid simulation and theoretical analysis. Finally, several prototypes were made. The effectiveness of the elastic inlet and outlet on improving the performance of the prototype and the effect of the elastic cavity height on the performance of the prototype were tested, respectively. The test results showed that the elastic inlet and outlet effectively improved the flow rate and output backpressure without increasing the maximum output backpressure. The maximum flow rate of the pump system without load was increased by 36%. In addition, the elastic cavity height adversely affected the flow rate and output backpressure of the prototypes, but had no effect on the maximum output backpressure. In summary, the elastic inlet and outlet can effectively increase the output performance of the piezoelectric pump, but the design height should be appropriately reduced.

7.
Sensors (Basel) ; 20(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630057

RESUMO

Autonomous vehicles can achieve accurate localization and real-time road information perception using sensors such as global navigation satellite systems (GNSSs), light detection and ranging (LiDAR), and inertial measurement units (IMUs). With road information, vehicles can navigate autonomously to a given position without traffic accidents. However, most of the research on autonomous vehicles has paid little attention to road profile information, which is a significant reference for vehicles driving on uneven terrain. Most vehicles experience violent vibrations when driving on uneven terrain, which reduce the accuracy and stability of data obtained by LiDAR and IMUs. Vehicles with an active suspension system, on the other hand, can maintain stability on uneven roads, which further guarantees sensor accuracy. In this paper, we propose a novel method for road profile estimation using LiDAR and vehicles with an active suspension system. In the former, 3D laser scanners, IMU, and GPS were used to obtain accurate pose information and real-time cloud data points, which were added to an elevation map. In the latter, the elevation map was further processed by a Kalman filter algorithm to fuse multiple cloud data points at the same cell of the map. The model predictive control (MPC) method is proposed to control the active suspension system to maintain vehicle stability, thus further reducing drifts of LiDAR and IMU data. The proposed method was carried out in outdoor environments, and the experiment results demonstrated its accuracy and effectiveness.

8.
J Zhejiang Univ Sci ; 5(7): 878-83, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15495318

RESUMO

To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.


Assuntos
Algoritmos , Automóveis , Desenho Assistido por Computador , Transferência de Energia , Análise de Falha de Equipamento/métodos , Modelos Teóricos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA