Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Med ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615186

RESUMO

With the progression of diabetic retinopathy (DR) from the non-proliferative (NPDR) to proliferative (PDR) stage, the possibility of vision impairment increases significantly. Therefore, it is clinically important to detect the progression to PDR stage for proper intervention. We propose a segmentation-assisted DR classification methodology, that builds on (and improves) current methods by using a fully convolutional network (FCN) to segment retinal neovascularizations (NV) in retinal images prior to image classification. This study utilizes the Kaggle EyePacs dataset, containing retinal photographs from patients with varying degrees of DR (mild, moderate, severe NPDR and PDR. Two graders annotated the NV (a board-certified ophthalmologist and a trained medical student). Segmentation was performed by training an FCN to locate neovascularization on 669 retinal fundus photographs labeled with PDR status according to NV presence. The trained segmentation model was used to locate probable NV in images from the classification dataset. Finally, a CNN was trained to classify the combined images and probability maps into categories of PDR. The mean accuracy of segmentation-assisted classification was 87.71% on the test set (SD = 7.71%). Segmentation-assisted classification of PDR achieved accuracy that was 7.74% better than classification alone. Our study shows that segmentation assistance improves identification of the most severe stage of diabetic retinopathy and has the potential to improve deep learning performance in other imaging problems with limited data availability.

2.
Front Immunol ; 10: 2336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632407

RESUMO

Inhalational exposure to crystalline silica is linked to several debilitating systemic autoimmune diseases characterized by a prominent humoral immune component, but the mechanisms by which silica induces autoantibodies is poorly understood. To better understand how silica lung exposure breaks B cell tolerance and unleashes autoreactive B cells, we exposed both wildtype mice of healthy C57BL/6 and lupus-prone BXSB, MRL, and NZB strains and mice carrying an autoantibody transgene on each of these backgrounds to instilled silica or vehicle and monitored lung injury, autoimmunity, and B cell fate. Silica exposure induced lung damage and pulmonary lymphoid aggregates in all strains, including in genetically diverse backgrounds and in autoantibody transgenic models. In wildtype mice strain differences were observed in specificity of autoantibodies and site of enhanced autoantibody production, consistent with genetic modulation of the autoimmune response to silica. The unique autoantibody transgene reporter system permitted the in vivo fate of autoreactive B cells and tolerance mechanisms to be tracked directly, and demonstrated the presence of transgenic B cells and antibody in pulmonary lymphoid aggregates and bronchoalveolar lavage fluid, respectively, as well as in spleen and serum. Nonetheless, B cell enumeration and transgenic antibody quantitation indicated that B cell deletion and anergy were intact in the different genetic backgrounds. Thus, silica exposure sufficient to induce substantial lung immunopathology did not overtly disrupt central B cell tolerance, even when superimposed on autoimmune genetic susceptibility. This suggests that silica exposure subverts tolerance at alternative checkpoints, such as regulatory cells or follicle entry, or requires additional interactions or co-exposures to induce loss of tolerance. This possibility is supported by results of differentiation assays that demonstrated transgenic autoantibodies in supernatants of Toll-like receptor (TLR)7/TLR9-stimulated splenocytes harvested from silica-exposed, but not vehicle-exposed, C57BL/6 mice. This suggests that lung injury induced by silica exposure has systemic effects that subtly alter autoreactive B cell regulation, possibly modulating B cell anergy, and that can be unmasked by superimposed exposure to TLR ligands or other immunostimulants.


Assuntos
Autoanticorpos/imunologia , Autoimunidade , Exposição Ambiental/efeitos adversos , Imunomodulação , Dióxido de Silício/efeitos adversos , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Tolerância Imunológica , Imuno-Histoquímica , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Camundongos , Camundongos Transgênicos
3.
Biotechniques ; 57(5): 254-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25391914

RESUMO

Two-color fluorescent in situ hybridization (FISH) is a widely used technique for comparing relative gene expression patterns. Current two-color FISH protocols are not ideal for detecting weakly expressed transcripts or monitoring signal strength and background levels during the course of the reaction. Here we describe an improved FISH protocol using the conventional highly sensitive chromogenic substrates nitro blue tetrazolium (NBT)/5-bromo-4-chloro-3-indolyl phosphate (BCIP) and Vector Red in zebrafish embryos. This protocol substantially improves on existing FISH techniques by combining the advantages of long reactivity of alkaline phosphatase, chromogenic monitoring of both developing reactions, and the ability to perform subsequent high-resolution fluorescent imaging. Although tested in zebrafish, a similar approach is expected to be applicable to ISH in any model organism.


Assuntos
Compostos Cromogênicos/análise , Embrião não Mamífero/química , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Peixe-Zebra
4.
Dev Biol ; 393(1): 149-159, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24956419

RESUMO

Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM). An ETS-family transcription factor Etsrp/Etv2/ER71 has been implicated in vasculogenesis and hematopoiesis in multiple vertebrates. However, its role during neutrophil development is not well understood. Here we demonstrate using zebrafish embryos that Etv2 has a specific cell-autonomous function during primitive neutropoiesis in the anterior lateral plate mesoderm (ALPM) but has little effect on erythropoiesis or the posterior lateral plate mesoderm (PLPM) expression of neutrophil marker myeloperoxidase mpo/mpx. Our results argue that ALPM-derived neutrophils originate from etv2-expressing cells which downregulate etv2 during neutropoiesis. We further show that Scl functions downstream of Etv2 in anterior neutropoiesis. Additionally, we demonstrate that mpx expression within the PLPM overlaps with gata1 expression, potentially marking the cells with a dual myelo-erythroid potential. Intriguingly, initiation of mpx expression in the PLPM is dependent on gata1 but not etv2 function. Our results demonstrate that mpx expression is controlled differently in the ALPM and PLPM regions and describe novel roles for etv2 and gata1 during primitive neutropoiesis.


Assuntos
Fator de Transcrição GATA1/genética , Leucopoese , Neutrófilos/citologia , Peroxidase/biossíntese , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Embrião não Mamífero , Fator de Transcrição GATA1/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Mesoderma/embriologia , Mesoderma/metabolismo , Morfolinos/genética , Peroxidase/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores/biossíntese , Transativadores/genética , Troponina T/genética , Peixe-Zebra/sangue , Proteínas de Peixe-Zebra/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA