Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579586

RESUMO

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Assuntos
Ascomicetos , Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Selênio/metabolismo , Ascomicetos/metabolismo , Oxirredução , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas Metálicas/química , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteômica
2.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2675-2681, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418192

RESUMO

Plant genome size (GS) varies greatly over 2400-fold in angiosperms. Genome sizes are closely related to plant traits from cellular to individual level, which would have far-reaching ecolo-gical implications. Genome size may shape the interspecific responses of plants to changes of resource availability in Inner Mongolia grassland which is co-limited by water and nitrogen availabi-lity. We tested the role of genome size in structuring plant community composition after single and combined water (W) amd nitrogen (N) addition in a typical grassland of Inner Mongolia. Plant genome sizes were estimated by flow cytometry. We found that the response of plant aboveground net primary production (ANPP) to change in water availability was significantly affected by genome size. Water and NW addition significantly increased ANPP of small GS plants, instead of large GS species. Nitrogen addition had no effects on ANPP of both small and large GS plants. We found no effects of all the treatments on plant species richness. Results showed that GS modulated the response of grassland plant species to changes in water rather than nitrogen availability in Inner Mongolia. Since GS is a relatively constant trait with substantial interspecific variation, the application of GS in ecological studies would be of great significance to better understanding of ecosystem structure and function under global change.


Assuntos
Pradaria , Nitrogênio , China , Tamanho do Genoma , Poaceae , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA