Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
ACS Appl Mater Interfaces ; 16(29): 38177-38187, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011741

RESUMO

Defective metal-organic frameworks (MOFs) have shown great potential for catalysis due to abundant active sites and adjustable physical and chemical properties. A series of Ce-based MOFs with different defect contents were synthesized via a modulator-induced defect engineering strategy with the aid of the cell pulverization technique. The effects of modulators on the pore structure, morphology, valence distribution of Ce, and Lewis acidity of Ce-MOF-801 were systematically investigated. Among the different samples studied, the optimal Ce-MOF-801-50eq sample exhibited remarkable catalytic activity for DCPD hydrogenation, achieving a conversion rate of 100%, which is significantly higher compared to other Ce-MOF-801-neq samples as well as the Zr-MOF-801-50eq and Hf-MOF-801-50eq samples. The enhanced catalytic performance of Ce-MOF-801-50eq can be attributed to advantages provided by defect engineering, such as the high specific surface area, proper pore size distribution, abundant unsaturated metal sites, and Ce3+/Ce4+ atom ratio, which have been supported by various characterizations. This study provides important insights into the rational design of Ce-MOFs in the field of catalytic DCPD hydrogenation.

2.
Langmuir ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021329

RESUMO

This research delves into the preparation of heteronuclear bimetallic catalysts and explores their catalytic properties in the thermal decomposition of ammonium perchlorate (AP). The study's central focus is on enhancing the thermal decomposition characteristics of AP and, consequently, the combustion performance of composite solid propellants. The synthesized materials underwent structural characterization by XRD, XPS, SEM, and FTIR. Catalytic properties were examined using DTA tests. Notably, catalysts derived from calcination at 500 °C exhibited heightened catalytic activity. They advanced the pyrolysis temperature by 135.4 °C and reduced the activation energy by 82.38 kJ/mol compared with pure AP. To further elucidate the decomposition mechanism of AP, the investigation also employed a combined approach involving DSC-TG-FTIR-MS analysis.

3.
Small ; : e2404623, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004866

RESUMO

The high-energy (H2dabco)[NH4(ClO4)3] (DAP-4) with excellent energetic performance attracts wide attention from researchers. The investigation of its interaction with the Aluminum (Al) is of great importance. However, the higher ignition threshold of DAP-4 and the dense oxide layer (Al2O3) of Al severely limit the energy release efficiency of Al/DAP-4. In this study, a new idea to is first proposed to improve and adjust the thermal decomposition and combustion performance of Al/DAP-4 by constructing a highly dispersed iron (Fe) nanoparticle interfacial layer. It acts as a gradient catalyst to promote the thermal decomposition and combustion of DAP-4 and Al, and it also act as an oxygen transport channel to promote the contact and reaction of oxidizing gases with the internal reactive Al powder. It reduces the thermal decomposition temperature of Al@Fe-3/DAP-4 from 386.30 °C (Al/DAP-4) to 349.48 °C and leads to the vigorous combustion. Theoretical calculations show that Fe nanoparticle interfacial layer can facilitate the transport of oxygen through the established oxygen transport channels, and it can also significantly improve the energetic properties of Al@Fe-3/DAP-4 composites. In conclusion, the new approach is proposed to improve the performance of metal fuel/oxidizer composites by constructing interfacial layers, which is expected to promote their practical applications.

4.
J Anim Sci Biotechnol ; 15(1): 92, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965570

RESUMO

BACKGROUND: Environmental heat stress (HS) can have detrimental effects on milk production by compromising the mammary function. Mammary plasma flow (MPF) plays a crucial role in nutrient supply and uptake in the mammary gland. In this experiment, we investigated the physiological and metabolic changes in high-yielding cows exposed to different degrees of HS: no HS with thermal-humidity index (THI) below 68 (No-HS), mild HS (Mild-HS, 68 ≤ THI ≤ 79), and moderate HS (Mod-HS, 79 < THI ≤ 88) in their natural environment. Our study focused on the changes in blood oxygen supply and mammary glucose uptake and utilization. RESULTS: Compared with No-HS, the MPF of dairy cows was greater (P < 0.01) under Mild-HS, but was lower (P < 0.01) in cows under Mod-HS. Oxygen supply and consumption exhibited similar changes to the MPF under different HS, with no difference in ratio of oxygen consumption to supply (P = 0.46). The mammary arterio-vein differences in glucose concentration were lower (P < 0.05) under Mild- and Mod-HS than under no HS. Glucose supply and flow were significantly increased (P < 0.01) under Mild-HS but significantly decreased (P < 0.01) under Mod-HS compared to No-HS. Glucose uptake (P < 0.01) and clearance rates (P < 0.01) were significantly reduced under Mod-HS compared to those under No-HS and Mild-HS. Under Mild-HS, there was a significant decrease (P < 0.01) in the ratio of lactose yield to mammary glucose supply compared to that under No-HS and Mod-HS, with no difference (P = 0.53) in the ratio of lactose yield to uptaken glucose among different HS situations. CONCLUSIONS: Degrees of HS exert different influences on mammary metabolism, mainly by altering MPF in dairy cows. The output from this study may help us to develop strategies to mitigate the impact of different degrees of HS on milk production.

5.
Sci Total Environ ; 935: 173371, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772486

RESUMO

Abundant naturally and anthropogenically exposed surrounding rocks (NESRs and AESRs) in mining areas may pose persistent threats as sources of potentially toxic elements (PTEs), but this has been historically overlooked, especially for thallium (Tl) and arsenic (As). Here, the release risks of Tl and As from both NESRs and AESRs in a typical TlAs sulfide mining area were investigated. In a single leaching process, AESRs released 10.4 % of total Tl (157 µg L-1) and 32.5 % of total As (4089 µg L-1), 2-3 orders of magnitude higher than NESRs. Prolonged multiple leaching tests revealed notable and long-term risks of release of Tl and As from AESRs, associated with oxidation and dissolution of iron/sulfur-bearing minerals. Substantial release of PTEs was linked to the transformation/degradation of the -OH functional group and extensive dissolution of secondary sulfate minerals in AESRs. Ultrafiltration and STEM-EDS indicate that 18.4 % of water-extracted As released from AESRs existed as natural nanoparticles consisting of iron/sulfur-bearing minerals. This study highlights the high risks of Tl and As release from anthropogenically exposed surrounding rocks and the importance of nanoparticles in PTE transport, and provides insights into the control of PTEs in mining areas.

6.
J Agric Food Chem ; 72(12): 6414-6423, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501560

RESUMO

Previous research has demonstrated that in pregnant mice deficient in l-methionine (Met), the mixture of the dipeptide l-methionyl-l-methionine (Met-Met) with Met was more effective than Met alone in promoting mammogenesis and lactogenesis. This study aimed to investigate the role of a novel long noncoding RNA (lncRNA), named mammary gland proliferation-associated lncRNA (MGPNCR), in these processes. Transcriptomic analysis of mammary tissues from Met-deficient mice, supplemented either with a Met-Met/Met mixture or with Met alone, revealed significantly higher MGPNCR expression in the Met group compared to the mixture group, a finding recapitulated in a mammary epithelial cell model. Our findings suggested that MGPNCR hindered mammogenesis and milk protein synthesis by binding to eukaryotic initiation factor 4B (eIF4B). This interaction promoted the dephosphorylation of eIF4B at serine-422 by enhancing its association with protein phosphatase 2A (PP2A). Our study sheds light on the regulatory mechanisms of lncRNA-mediated dipeptide effects on mammary cell proliferation and milk protein synthesis. These insights underscore the potential benefits of utilizing dipeptides to improve milk protein in animals and potentially in humans.


Assuntos
Fatores de Iniciação em Eucariotos , Metionina , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Animais , Camundongos , Metionina/metabolismo , RNA Longo não Codificante/metabolismo , Dipeptídeos/metabolismo , Racemetionina/metabolismo , Proteínas do Leite/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo
7.
Molecules ; 29(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474686

RESUMO

The combustion behavior of various propellant samples, including double-base propellants, pressed nitramine powders, and modified double-base propellants containing nitramine, was examined using OH-PLIF technology. The combustion process took place within a combustion chamber, and images capturing the flame at the moment of stable combustion were selected for further analysis. The distribution and production rate of OH radicals in both the double-base propellant and the nitramine-modified double-base propellant were simulated using Chemkin-17.0 software. The outcomes from both the experimental and simulation studies revealed that the concentration of OH radicals increased with a higher content of NG in the double-base propellant. In the modified double-base propellant containing RDX, the OH radical concentration decreased as the RDX content increased, with these tendencies of change aligning closely with the simulation results.

8.
J Colloid Interface Sci ; 659: 569-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38198934

RESUMO

The construction of an S-scheme heterostructure is considered as a promising strategy for enhancing photocatalytic performance. Herein, a three-dimensional Bi5O7I (BOI) microsphere decorated with Bi2Sn2O7 (BSO) nanoparticles was prepared for the first time via a simple ultrasonic-assisted electrostatic self-assembly strategy and used for the degradation of 2,4-dinitrophenylhydrazine. 3 wt% Bi2Sn2O7/Bi5O7I has the highest degradation activity (93.7 %), with an apparent rate constant of 0.0848 min-1, which is 2.55 times that of the original Bi5O7I (0.0333 min-1). Moreover, the optimal binary heterojunction photocatalyst has good reusability and universal applicability. The results of cyclic voltammetry tests clarify that the optimal photocatalyst can provide more surface reactive sites. The results of radical trapping experiments and electron spin resonance indicate that holes (h+) and superoxide radicals are the main active radicals in the degradation process of 2,4-dinitrophenylhydrazine. Photoelectrochemical and photoluminescence confirm that 3 wt% Bi2Sn2O7/Bi5O7I composites exhibit the highest separation rate of photogenerated carriers. Finally, based on the results of experimental studies and theoretical calculations, the S-scheme charge transfer path on Bi2Sn2O7/Bi5O7I composite is determined. This work provides a new perspective on how to design high-performance S-scheme bismuth oxyhalide-based heterojunction photocatalysts for solar energy conversion.

9.
Langmuir ; 40(4): 2198-2209, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241713

RESUMO

Understanding the decomposition process of ammonium nitrate (AN) on catalyst surfaces is crucial for the development of practical and efficient catalysts in AN-based propellants. In this study, two types of nano-Fe2O3 catalysts were synthesized: spherical particles with high-exposure (104) facets and flaky particles with high-exposure (110) facets. Through thermal analysis and particle size analysis, it was found that the nanosheet-Fe2O3 catalyst achieved more complete AN decomposition despite having a larger average particle size compared to nanosphere-Fe2O3. Subsequently, the effects of AN pyrolysis on the (110) and (104) facets were investigated by theoretical simulations. Through studying the interaction between AN and crystal facets, it was determined that the electron transfer efficiency on the (110) facet is stronger compared to that on the (104) facet. Additionally, the free-energy step diagrams for the reaction of the AN molecule on the two facets were calculated with the DFT + U method. Comparative analysis led us to conclude that the (110) facet of α-Fe2O3 is more favorable for AN pyrolysis compared to the (104) facet. Our study seeks to deepen the understanding of the mechanism underlying AN pyrolysis and present new ideas for the development of effective catalysts in AN pyrolysis.

10.
J Dairy Sci ; 107(2): 1299-1310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777007

RESUMO

During bovine mastitis, immune responses include the release of cytokines and the recruitment of leukocytes, resulting in profound structural and functional changes in the mammary gland. Our aims were to delineate systemic and local cytokine responses and to quantify histological changes in the mammary tissue of lactating cows after acute intramammary lipopolysaccharide (LPS) challenge. Ten multiparous dairy cows were paired to either treatment (TRT) or control (CON) groups. For TRT cows, one side of the udder was randomly assigned to receive treatment with LPS (50 µg in 10 mL of saline, TL) into both the front and rear quarters; the contralateral quarters received saline (10 mL). Udder-halves of CON cows were similarly assigned randomly to receive either saline (10 mL, CS) or no infusion (untreated). Temporal changes in the concentrations of 15 cytokines in the blood (0, 3, 6, 12, and 24 h relative to the LPS infusion) and in mammary tissue (0, 3, and 12 h) were determined, as were concomitant changes in mammary histology. The cytokines IL-6, IL-10, MCP-1, and MIP-1ß showed a systemic response as their concentrations were significantly different in the plasma of TRT cows as compared with CON cows after LPS challenge. The cytokines IL-1α, IL-1ß, IL-6, IL-8, IL-17A, IL-36RA, IP-10, MCP-1, MIP-1α, MIP-1ß, TNF-α, and VEGF-A showed a local response in TL glands, and 8 cytokines, IL-1ß, IL-6, IL-10, IL-17A, IL-36RA, IP-10, MIP-1ß, and VEGF-A showed systemic changes in the nonchallenged mammary glands adjacent to LPS-infused glands. Endotoxin challenge evoked changes in the histology of mammary tissue that included a 5.2- and 7.2-fold increases in the number of neutrophils in alveolar lumens at 3 h and 12 h, respectively. In summary, LPS challenge induced specific local and systemic responses in cytokine induction and elicited neutrophil infiltration in bovine mammary tissue.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Feminino , Bovinos , Animais , Citocinas/análise , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/análise , Lactação , Interleucina-10 , Leite/química , Interleucina-17/análise , Quimiocina CCL4/análise , Quimiocina CXCL10/análise , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Glândulas Mamárias Animais
11.
Langmuir ; 39(49): 18031-18042, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039553

RESUMO

Obviously, the dispersion of nanocatalytic materials has significant influence on their catalytic performance. In this study, an evaluation method for the dispersion of nanomaterials was established according to the different solid UV absorptions of different substances by taking the dispersion of nanocopper oxide (nano-CuO) in superfine ammonium perchlorate (AP) as an example. The nano-CuO/superfine AP composites with different nano-CuO dispersions can be obtained by changing the process parameters, such as varying the grinding method, the grinding strength, and the grinding time. Three replicate experiments were carried out for different composites to derive the average values of absorbance at 212 nm, and the dispersion of nano-CuO in superfine AP was calculated using the difference equation, as the solid UV curves at 210-214 nm were almost identical for each sample, especially at 212 nm. The properties of different samples were tested by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), differential scanning calorimetry (DSC), and thermogravimetry-mass spectrometry (TG-MS). The results show that the particle size and structure of superfine AP in the composites prepared by different methods were not changed. The XRD and IR techniques in this study were unable to characterize the dispersion of nano-CuO in the composites due to its low content. The dispersion of nano-CuO in the nano-CuO/superfine AP composites was significantly enhanced with the increase of grinding strength and grinding time, and the dispersion of nano-CuO was positively correlated with its catalytic performance, which means that the thermal decomposition performance of different composites improved with the increasing dispersion of nano-CuO. Highly dispersed nano-CuO exhibited a significant catalytic effect on superfine AP in TG-MS. The above conclusions demonstrate the accuracy of the difference equation for evaluating the dispersion of nanomaterials based on solid UV curves, which is expected to be used extensively in evaluating the dispersion of nanocatalytic materials in energetic materials.

12.
ACS Omega ; 8(42): 39749-39758, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901537

RESUMO

Nitromethane (NM) is the simplest nitroalkane fuel and has demonstrated potential usage as propellant and fuel additive. Thus, understanding the combustion characteristics and chemistry of NM is critical to the development of hierarchical detailed kinetic models of nitro-containing energetic materials. Herein, to further investigate the ignition kinetics of NM and supplement the experimental database for kinetic mechanism development, an experimental and kinetic modeling analysis of the ignition delay times (IDTs) of NM behind reflected shock waves at high fuel concentrations is reported against previous studies. Specifically, the IDTs of NM are measured via a high-pressure shock tube within the temperature from 900 to 1150 K at pressures of 5 and 10 bar and equivalence ratios of 0.5, 1.0, and 2.0. Brute-force sensitivity analysis and chemical explosive mode analysis in combination with reaction path analysis are employed to reveal the fundamental ignition kinetics of NM. Finally, a skeletal mechanism for NM is derived via the combination of directed relation graph-based methods, which demonstrates good prediction accuracy of NM ignition and flame speeds. The present work should be valuable for understanding the combustion chemistry of NM and the development of the fundamental reaction mechanism of nitroalkane fuels.

13.
RSC Adv ; 13(37): 25853-25861, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655351

RESUMO

Metal organic complexes are regarded as a series of promising combustion catalysts for solid rocket propellants. Their effects on the combustion performance of propellants are closely related to the reaction mechanism. Here, the metal-organic complex Cu(Salen) was investigated as a candidate material for the combustion catalyst of the HMX-added composite modified double-base propellant (HMX-CMDB). The combustion performance of the propellant was found to be evidently enhanced in the presence of Cu(Salen) compared with the propellant samples containing Benzoic-Cu or without catalyst. The addition of Cu(Salen) can improve the burning rate and combustion efficiency of the propellant - and greatly reduce the burning rate pressure index. Analysis shows that the addition of Cu(Salen) can increase the combustion area, flame brightness and combustion surface uniformity of the propellant to a higher degree. The sample can spray more beams of bright filaments on the flat combustion section, and the amount of gas generated by decomposition also greatly increases. In addition, Cu(Salen) shows amazing advantages in improving the surface of the propellant and the temperature gradient of the combustion flame.

14.
Dalton Trans ; 52(36): 12796-12807, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37622218

RESUMO

Recently, the widespread use of nanocatalytic materials has contributed to an enormous improvement in the performance of energetic materials, especially, highly dispersed nanomaterials. However, the lack of quantitative methods for analyzing the dispersion of nanomaterials limits their further widespread use. Although various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. are used to analyze the relative dispersion of nanomaterials, it is not possible to quantitatively analyze their dispersion. Therefore, there has been an effort to develop new methods for the quantitative analysis of nanocatalytic materials. Fortunately, we were able to analyze the dispersion of nanocatalytic materials using the difference in their UV absorbance. More importantly, we established the corresponding difference equation to quantify the dispersion of nanocatalytic materials, which is capable of quantifying the dispersion of nano-Fe2O3 in nano-Fe2O3-ultrafine AP composites. The accuracy of the difference equation was verified using a variety of techniques and the desired results were obtained. Based on the above conclusions, the quantitative analysis method for the dispersion of nanomaterials that we established is expected to be widely used and promote the development of energetic materials.

15.
Sci Total Environ ; 902: 166068, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544453

RESUMO

Thallium (Tl) is a priority pollutant with high biotoxicity and has been of great concern worldwide in recent years. The former Lanmuchang Hg-Tl mining site in southwest China is a hotspot of multiple metal(loid)s pollution that previously caused large-scale chronic Tl poisoning, mainly resulting from carbonaceous Tl-bearing mining waste. However, arable land destroyed by historical mining wastes persists at high ecological risks decades after reclamation, but little is known about the solid phase partitioning and species of Tl during soil formation of underlying mining wastes as potential Tl sources. In this study, a representative reclaimed soil profile (100 cm depth) was selected in the lowlands to explore the geochemical cycling and environmental fate of Tl in mining waste-derived subsoil. The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis revealed an unexpected enrichment of Mn (2920-7250 mg/kg) and Tl (205-769 mg/kg) in the mining waste-derived subsoil. Results from BCR sequential extraction, X-ray Photoelectron Spectroscopy (XPS), and Electron Probe Microanalyses (EPMA) indicate that high Tl loading Mn oxide particulates (up to 15,712 ppm Tl) dominate the sequestration of Tl in the subsoil via oxidation-complexation and have a high potential for migration to both topsoil and groundwater. In addition, insights from microbial fossils and Fe-metabolizing bacteria closely related to Tl indicated that Fe (hydr)oxide particulates showing high Tl levels (up to 3865 mg/kg) point to biomineralization. Detailed mineralogical investigations revealed that hematite-siderite syngenetic particulates could serve as a promising mineralogical proxy for redox oscillations under periodic flooding and recorded the frequent groundwater level fluctuations experienced in the probed profile. Despite the potential for long-term preservation of high Tl loading Fe/Mn (hydr)oxides under HCO3-rich groundwater conditions in karst areas, the reductive release of Tl will be inevitable during flooding, implying that underlying carbonaceous mining waste will pose persistent and severe hazards to the ecosystem.

16.
Nanomaterials (Basel) ; 13(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770425

RESUMO

The crystal structure has a great influence on mechanical sensitivity and detonation performance of energetic materials. An efficient microfluidic platform was applied for size, morphology, and crystallinity controllable preparation of ultrafine HMX. The microfluidic platform has good mixing performance, quick response, and less reagent consumption. The ultrafine γ-HMX was first prepared at room temperature by microfluidic strategy, and the crystal type can be controlled accurately by adjusting the process parameters. With the increase in flow ratio, the particle size decreases gradually, and the crystal type changed from ß-HMX to γ-HMX. Thermal behavior of ultrafine HMX shows that γ→δ is easier than ß→δ, and the phase stability of HMX is ß > γ > δ. Furthermore, the ultrafine ß-HMX has higher thermal stability and energy release efficiency than that of raw HMX. The ultrafine HMX prepared by microfluidic not only has uniform morphology and narrow particle size distribution, but also exhibits high density and low sensitivity. This study provides a safe, facile, and efficient way of controlling particle size, morphology, and crystallinity of ultrafine HMX.

17.
Phys Chem Chem Phys ; 25(5): 3799-3805, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36647743

RESUMO

To obtain atomic-level insights into the decomposition behavior of 1,3,5-trinitro-2,4,6-trinitroaminobenzene (TNTNB) under different stimulations, this study applied reactive molecular dynamics simulations to illustrate the effects of thermal and shock stimuli on the TNTNB crystal. The results show that the initial decomposition of the TNTNB crystal under both thermal and shock stimuli starts with the breakage of the N-NO2 bond. However, the C6 ring in TNTNB undergoes structural rearrangement to form a C3-C5 bicyclic structure at a constant high temperature. Then, the C3 and C5 rings break in turn. The main final products of TNTNB under shock are N2, CO2, and H2O, while NO,  N2, H2O and CO are formed instead at 1 atm under a constant high temperature. Pressure is the main reason for this difference. High pressure promotes the complete oxidation of the reactants.

18.
J Phys Chem A ; 127(5): 1283-1292, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715586

RESUMO

Glycerol trinitrate (NG) and trimethylolethane trinitrate (TMETN), as typical nitrate esters, are important energetic plasticizers in solid propellants. With the aid of high-precision quantum chemical calculations, the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation theory and the transition state theory have been employed to investigate the decomposition kinetics of NG and TMETN in the gas phase (over the temperature range of 300-1000 K and pressure range of 0.01-100 atm) and liquid phase (using water as the solvent). The continuum solvation model based on solute electron density (SMD) was used to describe the solvent effect. The thermal decomposition mechanism is closely relevant to the combustion properties of energetic materials. The results show that the RO-NO2 dissociation channel overwhelmingly favors other reaction pathways, including HONO elimination for the decomposition of NG and TMETN in both the gas phase and liquid phase. At 500 K and 1 atm, the rate coefficient of gas phase decomposition of TMETN is 5 times higher than that of NG. Nevertheless, the liquid phase decomposition of TMETN is a factor of 5835 slower than that of NG at 500 K. The solvation effect caused by vapor pressure and solubility can be used to justify such contradictions. Our calculations provide detailed mechanistic evidence for the initial kinetics of nitrate ester decomposition in both the gas phase and liquid phase, which is particularly valuable for understanding the multiphase decomposition behavior and building detailed kinetic models for nitrate ester.

19.
Langmuir ; 38(49): 15234-15244, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36453942

RESUMO

As a new type of carbon material, graphene oxide aerogel (GA) is widely used in catalysis due to its porous structure, high-efficiency adsorption, and superb conductivity. In this study, GA was prepared into a dense coating layer surrounding ZnCo2O4/ZnO particles to form a composite GA-ZnCo2O4/ZnO by means of a hydrothermal, blast drying, and vacuum-freeze-drying approach applied to catalyze the thermal decomposition of ammonium perchlorate (AP). The physicochemical properties of the obtained GA-ZnCo2O4/ZnO were characterized by different analytical methods. Scanning electron microscopy (SEM) analysis exhibited that GA is coated on the surface of ZnCo2O4/ZnO, forming a dense layer. Brunner Emmet Teller (BET) measurement results show that GA-ZnCo2O4/ZnO has a smooth macropore distribution curve and a larger specific surface area. Moreover, The catalytic effect investigation on AP with GA-ZnCo2O4/ZnO: the high temperature decomposition (HTD) peak temperature of AP in the presence of 5 wt % GA-ZnCo2O4/ZnO was reduced from 441 to 294 °C, and the exotherm of AP was expanded from 205 to 1275 J/g at a heating rate of 15 °C/min. Through the calculation, GA-ZnCo2O4/ZnO makes the activation energy and Gibbs free energy of the AP pyrolysis lower so that the reaction is easier to occur. Thermogravimetric-mass (TG-MS) spectrometry revealed that during thermal decomposition of AP, GA-ZnCo2O4/ZnO leveraged the synergistic catalysis of ZnCo2O4/ZnO and GA that boosted the flow of electrons from ClO4- to O2 and increased the absorption of the gas product to accelerate the AP pyrolysis. These results provided a facile strategy to prepare GA-based composite catalysts with extraordinary application prospects in the domain of solid propellants.

20.
J Anim Sci Biotechnol ; 13(1): 131, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380371

RESUMO

BACKGROUND: Mammary health is important for transition dairy cows and has been well recognized to exert decisive effects on animal welfare. However, the factors influencing mammary health are still unclear. Differential somatic cell count (DSCC) could reflect the mastitis risk since it is the percentage of neutrophils plus lymphocytes in total somatic cells and could be reflective of mammary health of dairy cows. This work aimed to investigate the assessment and prognosis of the health of transition cows based on blood neutrophil extracellular traps (NETs). RESULTS: Eighty-four transition Holstein dairy cows were selected. The serum was sampled in all the animals at week 1 pre- and postpartum, and milk was sampled at week 1 postpartum. Based on the DSCC in milk at week 1, cows with lower (7.4% ± 4.07%, n = 15) and higher (83.3% ± 1.21%, n = 15) DSCCs were selected. High DSCC cows had higher levels of red blood cell counts (P < 0.05), hemoglobin (P = 0.07), and hematocrit (P = 0.05), higher concentrations of serum oxidative variables [(reactive oxygen species (P < 0.05), malondialdehyde (P < 0.05), protein carbonyl (P < 0.05), and 8-hydroxy-2-deoxyguanosine (P = 0.07)], higher levels of serum and milk NETs (P < 0.05) and blood-milk barrier indicators, including serum ß-casein (P = 0.05) and milk immunoglobulin G2 (P = 0.09), than those of low DSCC cows. In addition, lower concentrations of serum nutrient metabolites (cholesterol and albumin) (P < 0.05) and a lower level of serum deoxyribonuclease I (P = 0.09) were observed in high DSCC cows than in low DSCC cows. Among the assessments performed using levels of the three prepartum serum parameters (NETs, deoxyribonuclease I and ß-casein), the area under the curve (0.973) of NETs was the highest. In addition, the sensitivity (1.00) and specificity (0.93) were observed for the discrimination of these cows using NETs levels with a critical value of 32.2 ng/mL (P < 0.05). CONCLUSIONS: The formation of NETs in blood in transition dairy cows may damage the integrity of the blood-milk barrier and thereby increase the risk for mastitis in postpartum cows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA