RESUMO
Wheat (Triticum aestivum) is the second largest grain crop worldwide, and one of the three major grain crops produced in China. Take-all disease, caused by Gaeumannomyces graminis var. tritici (Ggt) infection, is a widespread and devastating soil-borne disease that harms wheat production. At present, the prevention and control of wheat take-all depend largely on the application of chemical pesticides. Chemical pesticides, however, not only lead to increased drug resistance of pathogens but also leave significant residues in the soil, causing serious environmental pollution. In this study, we investigated the application of Bacillus subtilis to achieve take-all disease control in wheat while reducing pesticide application. Antagonistic bacteria were screened by plate test, species identification of strains was performed by Gram staining and sequencing of 16s rDNA, secondary metabolite activity of strains was detected by clear circle method, strain compatibility and effect of compounding on Ggt were detected by plate, and the application prospects of specific strains were analyzed by greenhouse and field experiments. We found that five B. subtilis strains, JY122, JY214, ZY133, NW03, Z-14, had significant antagonistic effects against Ggt, and could secrete antimicrobial proteins including amylase, protease, and cellulase. Furthermore, Z-14 and JY214 cultures have also been shown to change the morphology of Ggt mycelium. These results also showed that Z-14, JY214, and their combination can control take-all disease in wheat at a reduced level of pesticide use. In summary, we screened two Bacillus spp. strains, Z-14 and JY214, that could act as antagonists that contribute to the biological control of wheat take-all disease. These findings provide resources and ideas for controlling crop diseases in an environmentally friendly manner.
RESUMO
Platelet-rich plasma (PRP) has been applied in a series of clinical treatments. PRP contains high-concentrated platelets, which, when activated, could secret a variety of growth factors and cytokines, to promote and/or enhance healing of injured tissues. Non-activated platelets suspension could be prepared by an isolation method of centrifugation and washing currently. However, it is not clear whether platelets, if any, are already activated during this process and there is no simple method to monitor their activation accordingly. Shear-Horizontal Surface Acoustic Wave sensors (SH-SAW, Love Mode) are promising in fundamental biology as well as biomedical engineering, detecting cell behaviors in liquid in a non-invasive, simple and quantitative manner. In this study, Love mode sensors are adopted for the label-free detection of protein secreted by platelets. Carbon nanotube (CNT) is reported as an advisable platform of both non-specific protein adsorption and specific protein binding. For further improvement of Love mode sensor performance, novel CNT -coated parylene-C film is prepared on its surface as both the acoustic-wave-guiding layer and bio-interface layer. The S21 loss curves of Love mode sensors were recorded and the corresponding resonance frequencies were extracted. The results showed that the CNT-enhanced sensor possessed an increased resonance frequency shift when compared to normal sensor with single parylene-C film under identical collagen concentrations. Then, the modified sensor is used for label-free detection of protein released by various concentrations of platelets. The results revealed high sensitivity and consistency, indicating the potential of CNT-enhanced Love mode sensors in cell-based applications.