Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Microbiol ; 14: 1064358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819023

RESUMO

Soil salinization and acidification seriously damage soil health and restricts the sustainable development of planting. Excessive application of chemical fertilizer and other reasons will lead to soil acidification and salinization. This study focus on acid and salinized soil, investigated the effect of phosphate-solubilizing bacteria, Aspergillus niger MJ1 combined with nitrogen-fixing bacteria Pseudomonas stutzeri DSM4166 or mutant Pseudomonas fluorescens CHA0-nif on crop quality, soil physicochemical properties, and microbial communities. A total of 5 treatments were set: regular fertilization (T1), regular fertilization with MJ1 and DSM4166 (T2), regular fertilization with MJ1 and CHA0-nif (T3), 30%-reducing fertilization with MJ1 and DSM4166 (T4), and 30%-reducing fertilization with MJ1 and CHA0-nif (T5). It was found that the soil properties (OM, HN, TN, AP, AK, and SS) and crop quality of cucumber (yield production, protein, and vitamin C) and lettuce (yield production, vitamin C, nitrate, soluble protein, and crude fiber) showed a significant response to the inoculated strains. The combination of MJ1 with DSM4166 or CHA0-nif influenced the diversity and richness of bacterial community in the lettuce-grown soil. The organismal system-, cellular process-, and metabolism-correlated bacteria and saprophytic fungi were enriched, which were speculated to mediate the response to inoculated strains. pH, OM, HN, and TN were identified to be the major factors correlated with the soil microbial community. The inoculation of MJ1 with DSM4166 and CHA0-nif could meet the requirement of lettuce and cucumber growth after reducing fertilization in acid and salinized soil, which provides a novel candidate for the eco-friendly technique to meet the carbon-neutral topic.

2.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3347-3356, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511374

RESUMO

Establishing the remote sensing yield estimation model of wheat-maize rotation cultivated land can timely and accurately estimate the comprehensive grain yield. Taking the winter wheat-summer maize rotation cultivated land in Caoxian County, Shandong Province, as test object, using the Sentinel-2 images from 2018 to 2019, we compared the time-series feature classification based on QGIS platform and support vector machine algorithm to select the best method and extract sowing area of wheat-maize rotation cultivated land. Based on the correlation between wheat and maize vegetation index and the statistical yield, we screened the sensitive vegetation indices and their growth period, and obtained the vegetation index integral value of the sensitive spectral period by using the Newton-trapezoid integration method. We constructed the multiple linear regression and three machine learning (random forest, RF; neural network model, BP; support vector machine model, SVM) models based on the integral value combination to get the best and and optimized yield estimation model. The results showed that the accuracy rate of extracting wheat and maize sowing area based on time-series features using QGIS platform reached 94.6%, with the overall accuracy and Kappa coefficient were 5.9% and 0.12 higher than those of the support vector machine algorithm, respectively. The remote sensing yield estimation in sensitive spectral period was better than that in single growth period. The normalized differential vegetation index and ratio vegetation index integral group of wheat and enhanced vegetation index and structure intensify pigment vegetable index integral group of maize could more effectively aggregate spectral information. The optimal combination of vegetation index integral was difference, and the fitting accuracy of machine learning algorithm was higher than that of empirical statistical model. The optimal yield estimation model was the difference value group-random forest (DVG-RF) model of machine learning algorithm (R2=0.843, root mean square error=2.822 kg·hm-2), with a yield estimation accuracy of 93.4%. We explored the use of QGIS platform to extract the sowing area, and carried out a systematical case study on grain yield estimation method of wheat-maize rotation cultivated land. The established multi-vegetation index integral combination model was effective and feasible, which could improve accuracy and efficiency of yield estimation.


Assuntos
Triticum , Zea mays , Tecnologia de Sensoriamento Remoto/métodos , Grão Comestível , China
3.
Ying Yong Sheng Tai Xue Bao ; 32(1): 252-260, 2021 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-33477233

RESUMO

It is objective needs during utilization and management of regional cultivated land resource to use remote sensing to accurately and efficiently retrieve the status of cultivated land fertility at county level and realize the gradation of cultivated land rapidly. In this study, with Dongping County as a case, using Landsat TM satellite imagery and cultivated land fertility evaluation data, the moisture vegetation fertility index (MVFI) was constructed based on surface water capacity index (SWCI) and normalized difference vegetation index (NDVI), and then the optimal inversion model was optimized to obtain the best inversion model, which was further applied and verified at the county scale. The results showed that the correlation coefficient between MVFI and integrated fertility index (IFI) was -0.753, which could comprehensively reflect the growth of winter wheat, soil moisture and land fertility, and had clear biophysical significance. The best inversion model was the quadratic model, with high inversion accuracy. This model was suitable for the inversion of cultivated land fertility in the county. The spatial distribution and uniformity of the inversion results were similar to the results of soil fertility evaluation. The area differences between the high, medium and low grades were all less than 2.9%. This study provided a remote sensing inversion method of cultivated land fertility based on the feature space theory, which could effectively improve the evaluation efficiency and prediction accuracy of cultivated land fertility at the county scale.


Assuntos
Tecnologia de Sensoriamento Remoto , Água , Imagens de Satélites , Estações do Ano , Solo
4.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202692

RESUMO

Soil salinization is an important factor affecting winter wheat growth in coastal areas. The rapid, accurate and efficient estimation of soil salt content is of great significance for agricultural production. The Kenli area in the Yellow River Delta was taken as the research area. Three machine learning inversion models, namely, BP neural network (BPNN), support vector machine (SVM) and random forest (RF) were constructed using ground-measured data and UAV images, and the optimal model is applied to UAV images to obtain the salinity inversion result, which is used as the true salt value of the Sentinel-2A image to establish BPNN, SVM and RF collaborative inversion models, and apply the optimal model to the study area. The results showed that the RF collaborative inversion model is optimal, R2 = 0.885. The inversion results are verified by using the measured soil salt data in the study area, which is significantly better than the directly satellite remote sensing inversion method. This study integrates the advantages of multi-scale data and proposes an effective "Satellite-UAV-Ground" collaborative inversion method for soil salinity, so as to obtain more accurate soil information, and provide more effective technical support for agricultural production.


Assuntos
Rios , Salinidade , Solo/química , China , Tecnologia de Sensoriamento Remoto , Triticum/crescimento & desenvolvimento
5.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1451-1458, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32530221

RESUMO

Soil salinization severely hinders the development of agricultural economy in the Yellow River Delta. Clarifying the spatial variability of soil salinity at multiple scales in the field is of great significance for the improvement and utilization of saline soils and agricultural production. In this study, by dividing the three dimensions of field, plot and ridge, we collceted 152 sets of conducti-vity data through field survey sampling in a summer maize field in Kenli County of the Yellow River delta. The methods of classic statistics, geostatistics and Kriging interpolation were used to analyze the spatial variability and scale effects of multi-scale soil salt in the field. The results showed that soil in this area was moderately salinized, with the extent of soil salinity moderately varying at three scales. From the field, plot to the ridge scale, with the decreases of sampling scale, the variability of soil salinity increased and the standard deviation increased. The ridge and plot scales showed strong spatial correlation. The optimal model was Gaussian model, which was mainly affected by structural factors. The field scale was of medium spatial correlation, with exponential model as the optimal one, which was influenced by both random factors and structural factors. The spatial distribution characteristics of soil salinity at different scales were significantly different. The spatial chara-cteristics at small scale were masked at large scale, showing obvious scale effect. The distribution of soil salinity at the micro-ridge scale between ridges had obvious variation. Soil salt content gradually decreased with the micro-topography from high to low, while vegetation coverage changed from sparse to dense.


Assuntos
Rios , Solo , Agricultura , China , Salinidade , Estações do Ano
6.
PLoS One ; 15(1): e0227594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31914170

RESUMO

The ecological environment of the Yellow River Delta is fragile, and the soil degradation in the region is serious. Therefore it is important to discern the status of the soil degradation in a timely manner for soil conservation and utilization. The study area of this study was Kenli County in the Yellow River Delta of China. First, physical and chemical data of the soil were obtained by field investigations and soil sample analyses, and the hyper-spectra of air-dried soil samples were obtained via spectrometer. Then, the soil degradation index (SDI) was constructed by the key indicators of soil degradation, including pH, SSC, OM, AN, AP, AK, and soil texture. Next, according to a cluster analysis, soil degradation was divided into the following three grades: light degradation, moderate degradation, and heavy degradation. Moreover, the spectral characteristics of soil degradation were analyzed, and an estimation model of SDI was established by multiple stepwise regression. The results showed that the overall level of reflectance spectra increased with increased degree of soil degradation, that both derivative transformation and waveband reorganization could enhance the spectral information of soil degradation, and that the correlation between SDI and the spectral parameter of (Rλ2+Rλ1)/(Rλ2-Rλ1) was the highest among all the spectral parameters studied. On this basis, the optimum estimation model of SDI was established with the correlation coefficient of 0.811. This study fully embodies the potential of hyper-spectral technology in the study of soil degradation and provides a technical reference for the rapid extraction of information from soil degradation. Additionally, the study area is typical and representative, and thus can indirectly reflect the soil degradation situation of the whole Yellow River Delta.


Assuntos
Monitoramento Ambiental/métodos , Solo/química , Análise Espectral/métodos , China , Análise por Conglomerados , Monitoramento Ambiental/estatística & dados numéricos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nitrogênio/análise , Nitrogênio/química , Fósforo/análise , Fósforo/química , Potássio/análise , Potássio/química
7.
PLoS One ; 14(12): e0226508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830139

RESUMO

The use of remote sensing to rapidly and accurately obtain information on the spatiotemporal distribution of large-scale wheat and maize acreage is of great significance for improving the level of food production management and ensuring food security. We constructed a MODIS-NDVI time series dataset, combined linear interpolation and the Harmonic Analysis of Time Series algorithm to smooth the time series data curve, and classified the data with random forest algorithms. The results show that winter wheat-summer maize planting areas were mainly distributed in the western plains, southern region, and north-eastern part of the middle mountainous regions while the eastern hilly regions were less distributed and scattered. The winter wheat-summer maize planting areas in the study area continued to grow from 2004-2016, with the most significant growth in the northern part of the western plains and Yellow River Delta. The spatial planting probability reflected the planting core area and showed an intensive planting pattern. During the study period, the peak value and time for the NDVI of the winter wheat were significantly different and showed an increasing trend, while these parameters for the summer maize were relatively stable with little change. Therefore, we mapped a spatial distribution of the winter wheat and summer maize, using the time series data pre-processing synthesis and phenology curve random forest classification methods. Through precision analysis, we obtained satisfactory results, which provided a straightforward and efficient method to monitor the winter wheat and summer maize.


Assuntos
Agricultura/métodos , Monitoramento Ambiental/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Estações do Ano , Análise Espaço-Temporal , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Ecossistema , Comunicações Via Satélite
8.
Sensors (Basel) ; 19(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934683

RESUMO

Chlorophyll is the most important component of crop photosynthesis, and the reviving stage is an important period during the rapid growth of winter wheat. Therefore, rapid and precise monitoring of chlorophyll content in winter wheat during the reviving stage is of great significance. The satellite-UAV-ground integrated inversion method is an innovative solution. In this study, the core region of the Yellow River Delta (YRD) is used as a study area. Ground measurements data, UAV multispectral and Sentinel-2A multispectral imagery are used as data sources. First, representative plots in the Hekou District were selected as the core test area, and 140 ground sampling points were selected. Based on the measured SPAD values and UAV multispectral images, UAV-based SPAD inversion models were constructed, and the most accurate model was selected. Second, by comparing satellite and UAV imagery, a reflectance correction for satellite imagery was performed. Finally, based on the UAV-based inversion model and satellite imagery after reflectance correction, the inversion results for SPAD values in multi-scale were obtained. The results showed that green, red, red-edge and near-infrared bands were significantly correlated with SPAD values. The modeling precisions of the best inversion model are R² = 0.926, Root Mean Squared Error (RMSE) = 0.63 and Mean Absolute Error (MAE) = 0.92, and the verification precisions are R² = 0.934, RMSE = 0.78 and MAE = 0.87. The Sentinel-2A imagery after the reflectance correction has a pronounced inversion effect; the SPAD values in the study area were concentrated between 40 and 60, showing an increasing trend from the eastern coast to the southwest and west, with obvious spatial differences. This study synthesizes the advantages of satellite, UAV and ground methods, and the proposed satellite-UAV-ground integrated inversion method has important implications for real-time, rapid and precision SPAD values collected on multiple scales.


Assuntos
Tecnologia de Sensoriamento Remoto/métodos , Imagens de Satélites/métodos , Triticum/crescimento & desenvolvimento , Clorofila/química , Análise dos Mínimos Quadrados , Modelos Lineares , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estações do Ano , Triticum/química , Triticum/metabolismo
9.
PLoS One ; 13(12): e0203509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30513092

RESUMO

Studying soil nutrient variability and its effect on the growth and development of crops under a traditional tillage mode is the foundation for comprehensively implementing precision agriculture policies at the field scale and ensuring excellent crop management. In this paper, a 28.5 hm2 winter wheat field under the traditional cultivation model in Tianzhuang town of Huantai County was selected as the research area. The mesh point method was utilized for sampling (60×60 m), and the characteristics of soil available nitrogen (AN), available phosphorus (AP) and available potassium (AK) variations in the before sowing, reviving, jointing, and filling stages of winter wheat were analyzed using geostatistical and GIS methods. Moreover, Pearson correlation analysis was used to study the response of wheat growth and development to soil nutrient variations. As the growth stages progressed, 1) each nutrient showed the characteristics of low-high-low and moderate variability. The highest AN and AK contents were found at the reviving stage, while AP reached a turning point at the jointing stage. The order of variability of each nutrient was AN>AP>AK. 2) The nutrient variations first increased and then decreased and showed medium to strong spatial correlation. The three nutrients were strongly spatially correlated in the before sowing stage and moderately spatially correlated during the reviving stage. During the jointing and filling stages, AN had moderate spatial correlation, and AP and AK had strong spatial correlation. The spatial correlation of each nutrient was the weakest in the reviving stage, and the spatial correlation of AN was strongest in the before sowing stage, while the spatial correlations of AP and AK were strongest in the jointing stage. The spatial correlation of each soil nutrient decreased from the before sowing stage to the reviving stage and from the jointing stage to the filling stage, and the spatial correlation increased from the reviving stage to the jointing stage. 3) The soil nutrient content first increased and then decreased, and the grades of the nutrients gradually decreased. 4) The correlation between soil nutrients and wheat growth gradually increased. AN had the highest correlation with wheat growth, followed by AK and AP. The effect of soil nutrients on the growth of wheat at the reviving stage was greater than the effect of nutrients in the current stage. The growth of wheat at the jointing stage was mainly influenced by nutrients in the current stage, while the growth of wheat at the filling stage was influenced by the nutrient contents of both the previous and current stages. Thus, the date of fertilizer supplementation should be postponed properly. In this study, the soil nutrient dynamics and their influence on the growth of wheat during the winter wheat growth period under the traditional field model were well described, and these results could provide a theoretical basis for the precision management of soil nutrients in the northern winter wheat area where the planting environment and cultivation management are relatively uniform.


Assuntos
Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Solo , Triticum/crescimento & desenvolvimento , China
10.
Sci Rep ; 7(1): 11192, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894199

RESUMO

The influence of the equidistant sampling method was explored in a hyperspectral model for the accurate prediction of the water content of apple tree canopy. The relationship between spectral reflectance and water content was explored using the sample partition methods of equidistant sampling and random sampling, and a stepwise regression model of the apple canopy water content was established. The results showed that the random sampling model was Y = 0.4797 - 721787.3883 × Z3 - 766567.1103 × Z5 - 771392.9030 × Z6; the equidistant sampling model was Y = 0.4613 - 480610.4213 × Z2 - 552189.0450 × Z5 - 1006181.8358 × Z6. After verification, the equidistant sampling method was verified to offer a superior prediction ability. The calibration set coefficient of determination of 0.6599 and validation set coefficient of determination of 0.8221 were higher than that of the random sampling model by 9.20% and 10.90%, respectively. The root mean square error (RMSE) of 0.0365 and relative error (RE) of 0.0626 were lower than that of the random sampling model by 17.23% and 17.09%, respectively. Dividing the calibration set and validation set by the equidistant sampling method can improve the prediction accuracy of the hyperspectral model of apple canopy water content.

11.
Environ Monit Assess ; 189(2): 80, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28124294

RESUMO

The objectives of this study were to explore the spatial variability of soil salinity in coastal saline soil at macro, meso and micro scales in the Yellow River delta, China. Soil electrical conductivities (ECs) were measured at 0-15, 15-30, 30-45 and 45-60 cm soil depths at 49 sampling sites during November 9 to 11, 2013. Soil salinity was converted from soil ECs based on laboratory analyses. Our results indicated that at the macro scale, soil salinity was high with strong variability in each soil layer, and the content increased and the variability weakened with increasing soil depth. From east to west in the region, the farther away from the sea, the lower the soil salinity was. The degrees of soil salinization in three deeper soil layers are 1.14, 1.24 and 1.40 times higher than that in the surface soil. At the meso scale, the sequence of soil salinity in different topographies, soil texture and vegetation decreased, respectively, as follows: depression >flatland >hillock >batture; sandy loam >light loam >medium loam >heavy loam >clay; bare land >suaeda salsa >reed >cogongrass >cotton >paddy >winter wheat. At the micro scale, soil salinity changed with elevation in natural micro-topography and with anthropogenic activities in cultivated land. As the study area narrowed down to different scales, the spatial variability of soil salinity weakened gradually in cultivated land and salt wasteland except the bare land.


Assuntos
Monitoramento Ambiental , Rios/química , Salinidade , Cloreto de Sódio/análise , Solo/química , China , Geografia
12.
Appl Spectrosc ; 70(9): 1589-97, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27566255

RESUMO

As a key, yet difficult, issue currently in the quantitative remote sensing analysis of soil, the accurate and stable monitoring of soil salinity content (SSC) in situ should be studied and improved. The purpose of this study is to explore the method of fusing spectra outdoors with spectra indoors and improve the estimation precision of SSC based on near-infrared (NIR) reflectance hyper-spectra. First, samples of saline soil from the Yellow River delta of China were collected and analyzed. We measured three groups of sample spectra using a spectrometer: (1) situ-spectra, measured at sampling points in situ; (2) out-spectra, measured outdoors on air-dried samples; and, (3) lab-spectra, measured in a dark laboratory with the above air-dried samples. Second, four algorithms (multiplicative update, alternating least-squares, sparse affine non-negative matrix factorization (NMF), and gradient projection algorithms) of NMF were used to fuse the situ-spectra or out-spectra with the lab-spectra for the calibration of SSC. Finally, estimation models of SSC were built using the multiple linear regression method based on the first derivatives of the un-fused and fused spectra. The results indicate that using the NMF method to fuse the situ-spectra or out-spectra with the lab-spectra can heighten the correlation between SSC and the outdoor spectra in most wavelength ranges and improve the accuracy of the prediction model. The gradient projection algorithm shows the best performance with fewer variables and highest accuracy of the SSC model based on the NIR spectra.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 800-5, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400527

RESUMO

Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.


Assuntos
Malus/crescimento & desenvolvimento , Análise Espectral , Máquina de Vetores de Suporte , Árvores/crescimento & desenvolvimento , Fabaceae , Frutas , Modelos Teóricos , Folhas de Planta , Análise de Regressão
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 248-53, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27228776

RESUMO

This study chooses the core demonstration area of 'Bohai Barn' project as the study area, which is located in Wudi, Shandong Province. We first collected near-ground and multispectral images and surface soil salinity data using ADC portable multispectral camera and EC110 portable salinometer. Then three vegetation indices, namely NDVI, SAVI and GNDVI, were used to build 18 models respectively with the actual measured soil salinity. These models include linear function, exponential function, logarithmic function, exponentiation function, quadratic function and cubic function, from which the best estimation model for soil salinity estimation was selected and used for inverting and analyzing soil salinity status of the study area. Results indicated that all models mentioned above could effectively estimate soil salinity and models using SAVI as the dependent variable were more effective than the others. Among SAVI models, the linear model (Y = -0.524x + 0.663, n = 70) is the best, under which the test value of F is the highest as 141.347 at significance test level, estimated R2 0.797 with a 93.36% accuracy. Soil salinity of the study area is mainly around 2.5 per thousand - 3.5 per thousand, which gradually increases from southwest to northeast. The study has probed into soil salinity estimation methods based on near-ground and multispectral data, and will provide a quick and effective technical soil salinity estimation approach for coastal saline soil of the study area and the whole Yellow River Delta.

15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(2): 520-5, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24822432

RESUMO

This paper chose the typical salinization area in Kenli County of the Yellow River Delta as the study area, selected HJ-1A satellite HSI image at March 15, 2011 and TM image at March 22, 2011 as source of information, and pre-processed these data by image cropping, geometric correction and atmospheric correction. Spectral characteristics of main land use types including different degree of salinization lands, water and shoals were analyzed to find distinct bands for information extraction Land use information extraction model was built by adopting the quantitative and qualitative rules combining the spectral characteristics and the content of soil salinity. Land salinization information was extracted via image classification using decision tree method. The remote sensing image interpretation accuracy was verified by land salinization degree, which was determined through soil salinity chemical analysis of soil sampling points. In addition, classification accuracy between the hyperspectral and multi-spectral images were analyzed and compared. The results showed that the overall image classification accuracy of HSI was 96.43%, Kappa coefficient was 95.59%; while the overall image classification accuracy of TM was 89.17%, Kappa coefficient was 86.74%. Therefore, compared to multi-spectral TM data, the hyperspectral imagery could be more accurate and efficient for land salinization information extraction. Also, the classification map showed that the soil salinity distinction degree of hyperspectral image was higher than that of multi-spectral image. This study explored the land salinization information extraction techniques from hyperspectral imagery, extracted the spatial distribution and area ratio information of different degree of salinization land, and provided decision-making basis for the scientific utilization and management of coastal salinization land resources in the Yellow River Delta.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2203-6, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24159876

RESUMO

The hyperspectral reflectance of apple tree canopy during spring shoots stopping growth period was measured using ASD FieldSpec3 field spectrometer. Original spectral data were processed in deviation forms, and significant spectrum parameters correlated with chlorophyll content were found out with correlation analysis. The best vegetation indices were chosen and the apple canopy chlorophyll content estimation model was established by analyzing vegetation index of two-band combination in the sensitive region 400-1 350 nm. The result showed that (1) The sensitive band region of apple canopy chlorophyll content is 400-1 350 nm. (2) The vegetation index CCI(D(794)/D(763)) can commendably estimate the apple canopy chlorophyll content. (3) The model with CCI(D(794)/D(763)) as the independent variables was determined to be the best for chlorophyll content prediction of apple tree canopy. Therefore, using hyperspectral technology can estimate apple canopy chlorophyll content more rapidly and accurately, and provides a theoretical basis for rapid apple tree canopy nutrition diagnosis and growth monitoring.


Assuntos
Clorofila/análise , Malus/química , Malus/crescimento & desenvolvimento , Folhas de Planta/química , Análise Espectral , Modelos Teóricos
17.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 1023-7, 2013 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-23841421

RESUMO

The objective of the present paper is fast and nondestructive estimate of kalium content using ASD FieldSpec3 spectrometer determined hyperspectral data in apple florescence canopy. According to detection of hyperspectral data of the apple florescence canopy and kalium content data at laboratory in Qixia city of experimental orchards in 2008 and 2009, the correlation analysis of hyperspectral reflectance and its eleven transforms with kalium content was proceeded. The biggest correlation coefficient as independent variable and the estimation model of kalium content were established based on fuzzy recognition algorithms. The model was tested by sample inspection in 2008 and verified by data in 2009. The results showed that the correlation is less for the original spectral reflectance (R) and its reciprocal(1/R), logarithm (lgR), square root (R1/2) and the kalium content, but it is enhanced obviously for their first derivative and second derivative. The correlation coefficient(r) of kalium content estimating model y = 11.344 5h + 1.309 7 is 0.985 1, the total root mean square difference (RMSE) is 0.355 7 and F statistics is 3 085.6. The average relative error of measured values and estimated values for 24 inspection sample is 9.8%, estimation accuracy is 90.2% and verification accuracy is 83.3% utilizing test data in 2009. It was showed that this model is more stable by estimating apple florescence canopy of kalium content and the model precision is able to meet the needs of production.


Assuntos
Malus/química , Potássio/análise , Análise Espectral/métodos , Flores , Previsões , Lógica Fuzzy , Malus/crescimento & desenvolvimento , Modelos Teóricos
18.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3185-91, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24564148

RESUMO

Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content.


Assuntos
Algoritmos , Nitrogênio/análise , Solo/química , Análise Espectral/métodos , Álcalis/química , China , Monitoramento Ambiental/métodos , Hidrólise , Análise dos Mínimos Quadrados , Modelos Teóricos , Análise de Ondaletas
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(10): 2809-14, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24409741

RESUMO

The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Rios , Meio Ambiente , Modelos Teóricos , Redes Neurais de Computação , Plantas , Análise de Regressão , Solo
20.
Ying Yong Sheng Tai Xue Bao ; 24(10): 2863-70, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24483081

RESUMO

Taking Qixia City of Shandong, China as the study area, and based on the Landsat-5 TM and ALOS AVNIR-2 images, the canopy retrieval reflectance of apple trees at blossom stage was acquired. In combining with the measured reflectance of sample trees, the nitrogen-sensitive spectral indices were constructed and selected. By using the sensitive spectral indices as the independent variables, the nitrogen retrieval models were established, and the model with the best accuracy was used for spatial retrieve. The correlations between the spectral indices and the nitrogen nutritional status were in the order of canopy > leaf > flower. The sensitive indices were mainly composed of green, red, and near infrared bands. The accuracy of the retrieval models was in the order of support vector regression > multi-variable stepwise regression > one-variable regression. The retrieval results based on different images were similar, and showed that the leaf nitrogen content was mainly of grades 3-4 (27-33 g x kg(-1)), and the canopy nitrogen nutrient indices were mainly of grades 2-4 (TM: 38-47 g x kg(-1); ALOS: 32-41 g x kg(-1)). The spatial distribution of the retrieval nitrogen nutritional status based on different images also showed the similar trend, i. e., the nitrogen nutritional status was higher in the north and south than that in the middle part of the study area, and the areas with the high grades of leaf nitrogen and canopy nitrogen were mainly located in Sujiadian Town and Songshan subdistrict in the northwest, Zangjiazhuang Town and Tingkou Town in the northeast, and Shewopo Town in the south, which were consistent with the distribution of the key towns for apple production in Qixia City. This study provided a feasible method for the acquisition of nitrogen nutritional status of apple trees on macroscopic scale, and also, provided reference for other similar remote sensing retrievals.


Assuntos
Ecossistema , Malus/crescimento & desenvolvimento , Malus/metabolismo , Nitrogênio/metabolismo , Tecnologia de Sensoriamento Remoto/métodos , China , Flores/crescimento & desenvolvimento , Comunicações Via Satélite , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA