Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Foods ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998500

RESUMO

Porphyromonas gingivalis is crucial for the pathogenesis of periodontitis. This research investigated the effects of the fruit-derived flavonoid phloretin and its analogs on the growth of pure P. gingivalis and the flora of P. gingivalis mixed with the symbiotic oral pathogens Fusobacterium nucleatum and Streptococcus mitis. The results showed that the tested flavonoids had little effect on the biofilm amount of pure P. gingivalis, but significantly reduced the biofilm amount of mixed flora to 83.6~89.1%. Biofilm viability decreased to 86.7~92.8% in both the pure- and mixed-bacterial groups after naringenin and phloretin treatments. SEM showed that phloretin and phlorizin displayed a similar and remarkable destructive effect on P. gingivalis and the mixed biofilms. Transcriptome analysis confirmed that biofilm formation was inhibited by these flavonoids, and phloretin significantly regulated the transcription of quorum sensing. Phlorizin and phloretin reduced AI-2 activity to 45.9% and 55.4%, respectively, independent of the regulation of related gene transcription. This research marks the first finding that these flavonoids possess anti-biofilm properties against P. gingivalis and its intricate bacterial community, and the observed performance variations, driven by structural differences, underscore the existence of intriguing structure-activity relationships.

2.
J Microencapsul ; 41(4): 312-325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717966

RESUMO

The instability of ester bonds, low water solubility, and increased cytotoxicity of flavonoid glycoside esters significantly limit their application in the food industry. Therefore, the present study attempted to resolve these issues through liposome encapsulation. The results showed that baicalin butyl ester (BEC4) and octyl ester (BEC8) have higher encapsulation and loading efficiencies and lower leakage rate from liposomes than baicalin. FTIR results revealed the location of BEC4 and BEC8 in the hydrophobic layer of liposomes, which was different from baicalin. Additionally, liposome encapsulation improved the water solubility and stability of BEC4 and BEC8 in the digestive system and PBS but significantly reduced their cytotoxicity. Furthermore, the release rate of BEC4 and BEC8 from liposomes was lower than that of baicalin during gastrointestinal digestion. These results indicate that liposome encapsulation alleviated the negative effects of fatty chain introduction into flavonoid glycosides.


Assuntos
Ésteres , Flavonoides , Lipossomos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Lipossomos/química , Humanos , Ésteres/química , Solubilidade , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos
3.
Food Funct ; 15(11): 5785-5796, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38660890

RESUMO

In this study, we developed a multi-site acylation strategy to improve the lipophilicity and cellular uptake of troxerutin, a natural flavonoid with many health-promoting bioactivities. By clarifying the acylation properties of troxerutin catalyzed by lipases from different sources, a series of troxerutin ester derivatives acylated at different sites was synthesized, including troxerutin dipropyl (TDP), tripropyl (TTP), tetrapropyl (TEP), dibutyl (TDB), monohexyl (TMH), monooctyl (TMO) and monodecyl (TMD) esters. Interestingly, the troxerutin esters acylated at multiple sites with shorter fatty chains (TDP, TTP and TEP) had similar lipophilicity to the mono-acylated esters bearing longer fatty chains (TMH, TMO and TMD, respectively) and meanwhile demonstrated surprisingly lower cytotoxicity than that of the long fatty-chain mono-esters. In particular, the multi-acylated esters with shorter fatty chains showed remarkably higher cellular uptake than the mono-esters with long fatty chains. In vitro gastrointestinal digestion suggested that the multi-acylated esters of troxerutin were more resistant to gastrointestinal degradation than the mono-esters. These results indicated that multi-site acylation with short fatty chains could be an effective alternative to introducing one-site mono-acylation for the modification of troxerutin and other flavonoid compounds.


Assuntos
Hidroxietilrutosídeo , Lipase , Acilação , Humanos , Hidroxietilrutosídeo/análogos & derivados , Hidroxietilrutosídeo/farmacologia , Hidroxietilrutosídeo/química , Hidroxietilrutosídeo/metabolismo , Lipase/metabolismo , Lipase/química , Animais
4.
Front Bioeng Biotechnol ; 12: 1331218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576449

RESUMO

Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.

5.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611265

RESUMO

Natural polymer-based adhesive hydrogels have garnered significant interest for their outstanding strength and versatile applications, in addition to being eco-friendly. However, the adhesive capabilities of purely natural products are suboptimal, which hampers their practical use. To address this, we engineered carboxymethyl cellulose (CMC) surfaces with complementary bases, adenine (A) and thymine (T), to facilitate the self-assembly of adhesive hydrogels (CMC-AT) with a nanofiber configuration. Impressively, the shear adhesive strength reached up to 6.49 MPa with a mere 2% adhesive concentration. Building upon this innovation, we conducted a comparative analysis of the shear adhesion properties between CMC and CMC-AT hydrogel adhesives when applied to delignified and non-delignified wood chips. We examined the interplay between the adhesives and the substrate, as well as the role of mechanical interlocking in overall adhesion performance. Our findings offer a fresh perspective on the development of new biodegradable polymer hydrogel adhesives.

6.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674980

RESUMO

Nanocellulose fiber materials were considered promising biomaterials due to their excellent biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low proton conductivity significantly limited their application as proton exchange membranes. The methods previously reported to increase their proton conductivity often introduced non-biodegradable groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare cellulose-based proton exchange membranes that could simultaneously meet sustainability and high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once modified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet strength also increased. This study paved a new path for the preparation of environmentally friendly membrane materials that could replace the commonly used non-degradable ones, highlighting the potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells, supercapacitors, and solid-state batteries.

7.
ACS Appl Mater Interfaces ; 16(17): 21383-21399, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626424

RESUMO

Osteoarthritis (OA) progression is highly associated with chondrocyte mitochondrial dysfunction and disorders of catabolism and anabolism of the extracellular matrix (ECM) in the articular cartilage. The mitochondrial unfolded protein response (UPRmt), which is an integral component of the mitochondrial quality control (MQC) system, is essential for maintaining chondrocyte homeostasis. We successfully validated the pivotal role of activating transcription factor 5 (ATF5) in upregulating the UPRmt, mitigating IL-1ß-induced inflammation and mitochondrial dysfunction, and promoting balanced metabolism in articular cartilage ECM, proving its potential as a promising therapeutic target for OA. Modified mRNAs (modRNAs) have emerged as novel and efficient gene delivery vectors for nucleic acid therapeutic approaches. In this study, we combined Atf5-modRNA (modAtf5) with engineered exosomes derived from bone mesenchymal stem cells (ExmodAtf5) to exert cytoprotective effects on chondrocytes in articular cartilage via Atf5. However, the rapid localized metabolization of ExmodAtf5 limits its application. PLGA-PEG-PLGA (Gel), an injectable thermosensitive hydrogel, was used as a carrier of ExmodAtf5 (Gel@ExmodAtf5) to achieve a sustained release of ExmodAtf5. In vitro and in vivo, the use of Gel@ExmodAtf5 was shown to be a highly effective strategy for OA treatment. The in vivo therapeutic effect of Gel@ExmodAtf5 was evidenced by the preservation of the intact cartilage surface, low OARSI scores, fewer osteophytes, and mild subchondral bone sclerosis and cystic degeneration. Consequently, the combination of ExmodAtf5 and PLGA-PEG-PLGA could significantly enhance the therapeutic efficacy and prolong the exosome release. In addition, the mitochondrial protease ClpP enhanced chondrocyte autophagy by modulating the mTOR/Ulk1 pathway. As a result of our research, Gel@ExmodAtf5 can be considered to be effective at alleviating the progression of OA.


Assuntos
Fatores Ativadores da Transcrição , Condrócitos , Exossomos , Mitocôndrias , Osteoartrite , RNA Mensageiro , Resposta a Proteínas não Dobradas , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Exossomos/metabolismo , Exossomos/química , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/química , Fatores Ativadores da Transcrição/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Masculino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos
8.
Orthop Traumatol Surg Res ; 110(4): 103853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428485

RESUMO

OBJECTIVES: Whether the application of MBP plus cannulated screws works for old femoral neck fractures (OFNF) is unknown. The purpose of this study is to present a case series of OFNF in young adults using calcar buttress plate and three cannulated screws with autologous iliac bone grafts. METHODS: We conducted a retrospective study of eleven young patients (6 males and 5 females) with femoral neck fractures who were treated with open reduction and internal fixation at a single center between 2013 and 2021. The subjects had trauma-to-surgery intervals longer than 3weeks and all were fixed with a calcar buttress plate combined with three cannulated screws, which were supplemented by autologous iliac bone grafts. RESULTS: All eleven cases achieved radiological union under the surgery technique, which occurred on average at 4.46±1.29months after surgery. Complications included femoral neck shortening in all cases, heterotopic ossification in three cases, and osteonecrosis of the femoral head in two cases. One patient with osteonecrosis of the femoral head received total hip arthroplasty. In follow-ups of 24-52months, the median Harris hip score was 81.64±15.39. CONCLUSIONS: The medial buttress plate in combination with three cannulated screws and iliac autograft may be a good choice for treating old femoral neck fractures in young adults. LEVEL OF EVIDENCE: IV, case series.


Assuntos
Placas Ósseas , Parafusos Ósseos , Transplante Ósseo , Fraturas do Colo Femoral , Fixação Interna de Fraturas , Ílio , Humanos , Masculino , Fraturas do Colo Femoral/cirurgia , Feminino , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Adulto , Ílio/transplante , Adulto Jovem , Transplante Ósseo/métodos , Resultado do Tratamento , Autoenxertos
9.
J Agric Food Chem ; 72(8): 4246-4256, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38317352

RESUMO

A novel yeast-mediated hydrogenation was developed for the synthesis of neohesperidin dihydrochalcone (NHDC) in high yields (over 83%). Moreover, whole-cell catalytic hydrolysis was also designed to hydrolyze NHDC into potential sweeteners, hesperetin dihydrochalcone-7-O-glucoside (HDC-G) and hesperetin dihydrochalcone (HDC). The biohydrogenation was further combined with whole-cell hydrolysis to achieve a one-pot two-step biosynthesis, utilizing yeast to hydrogenate C═C in the structure, while Aspergillus niger cells hydrolyze glycosides. The conversion of NHDC and the proportion of hydrolysis products could be controlled by adjusting the catalysts, the components of the reaction system, and the addition of glucose. Furthermore, yeast-mediated biotransformation demonstrated superior reaction stability and enhanced safety and employed more cost-effective catalysts compared to the traditional chemical hydrogenation of NHDC synthesis. This research not only provides a new route for NHDC production but also offers a safe and flexible one-pot cascade biosynthetic platform for the production of high-value compounds from citrus processing wastes.


Assuntos
Chalconas , Hesperidina , Hesperidina/análogos & derivados , Saccharomyces cerevisiae , Hidrólise , Saccharomyces cerevisiae/metabolismo , Estudos de Viabilidade , Hesperidina/química , Biotransformação
10.
Carbohydr Polym ; 329: 121530, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286525

RESUMO

Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.

11.
IEEE Trans Cybern ; 54(3): 1782-1793, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37030789

RESUMO

This article studies the event-triggered cooperative output regulation problem of heterogeneous multiagent systems with external disturbances and unreliable communication link (i.e., packet losses occur intermittently). A novel hybrid event-triggering mechanism (ETM) is proposed, which imposes a strictly positive lower bound for triggering intervals, and an internal variable with jump dynamics is introduced to design triggering condition. A hybrid model is constructed to describe the closed-loop system with both flow and jump dynamics. Then, based on the hybrid model, Lyapunov-based consensus analysis, hybrid ETM design, and robust performance analysis results are developed. Compared with the existing results, the minimum triggering interval (MTI) can be prespecified, and Zeno behavior is ensured to be excluded no matter there exist disturbances or not, which is useful for control implementation. Besides, the packet losses are allowed to be nonidentical, that covers identical packet losses as a special case. Moreover, the tradeoff between MTI and the number of maximum-allowable successive packet losses is explicitly given. Finally, simulation results are provided to show the effectiveness of the proposed method.

12.
Int J Biol Macromol ; 254(Pt 2): 127912, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939763

RESUMO

The repair of bone defects using grafts is commonly employed in clinical practice. However, the risk of infection poses a significant concern. Tissue engineering scaffolds with antibacterial functionalities offer a better approach for bone tissue repair. In this work, firstly, two kinds of nanoparticles were prepared using chitosan to complex with ciprofloxacin and BMP-2, respectively. The ciprofloxacin complex nanoparticles improved the dissolution efficiency of ciprofloxacin achieving a potent antibacterial effect and cumulative release reached 95 % in 7 h. For BMP-2 complexed nanoparticles, the release time points can be programmed at 80 h, 100 h or 180 h by regulating the number of coating chitosan layers. Secondly, a functional scaffold was prepared by combining the two nanoparticles with chitosan nanofibers. The microscopic nanofiber structure of the scaffold with 27.28 m2/g specific surface area promotes cell adhesion, high porosity provides space for cell growth, and facilitates drug loading and release. The multifunctional scaffold exhibits programmed release function, and has obvious antibacterial effect at the initial stage of implantation, and releases BMP-2 to promote osteogenic differentiation of mesenchymal stem cells after the antibacterial effect ends. The scaffold is expected to be applied in clinical bone repair and graft infection prevention.


Assuntos
Quitosana , Nanofibras , Nanopartículas , Osteogênese , Nanofibras/química , Quitosana/química , Preparações de Ação Retardada/farmacologia , Ciprofloxacina/farmacologia , Regeneração Óssea , Engenharia Tecidual , Alicerces Teciduais/química , Antibacterianos/farmacologia , Nanopartículas/química
13.
Polymers (Basel) ; 15(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765508

RESUMO

With the development of portable devices and wearable devices, there is a higher demand for high-energy density and light lithium-ion batteries (LIBs). The separator is a significant component directly affecting the performance of LIBs. In this paper, a thin and porous chitosan nanofiber separator was successfully fabricated using the simple ethanol displacement method. The thickness of the CME15 separator was about half that of mainstream commercial Celgard2325 separators. Owing to its inherent polarity and high porosity, the obtained CME15 separator achieved a small contact angle (18°) and excellent electrolyte wettability (324% uptake). The CME15 separator could maintain excellent thermal dimensional stability at 160 °C. Furthermore, the CME15 separator-based LIBs exhibited excellent cycling performance after 100 cycles (117 mAh g-1 at 1 C). The present work offers a perspective on applying a chitosan nanofiber separator in light and high-performance lithium-ion batteries (LIBs).

14.
BMC Musculoskelet Disord ; 24(1): 123, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782133

RESUMO

BACKGROUND: The purpose of this study is to investigate the microbial patterns of periprosthetic joint infection (PJI) and fracture-related infection (FRI), and guide for the formulation of more accurate empirical antimicrobial regimens based on the differences in pathogen distribution. METHODS: A comparative analysis of pathogen distribution was conducted between 153 patients (76 with PJI and 77 with FRI). Predicted analyses against isolated pathogens from two cohorts were conducted to evaluate the best expected efficacy of empirical antimicrobial regimens (imipenem + vancomycin, ciprofloxacin + vancomycin, and piperacillin/tazobactam + vancomycin). RESULTS: Our study found significant differences in pathogen distribution between the PJI and FRI cohorts. Staphylococci (61.3% vs. 31.9%, p = 0.001) and Gram-negative bacilli (GNB, 26.7% vs. 56.4%, p < 0.001) were responsible for the majority of infections both in the PJI and FRI cohorts, and their distribution in the two cohorts showed a significant difference (p < 0.001). Multi-drug resistant organisms (MDRO) were more frequently detected in the FRI cohort (29.3% vs. 44.7%, p = 0.041), while methicillin-resistant coagulase-negative Staphylococci (MRCoNS, 26.7% vs. 8.5%, p = 0.002) and Canidia albicans (8.0% vs. 1.1%, p = 0.045) were more frequently detected in the PJI cohort. Enterobacter spp. and Acinetobacter baumannii were detected only in the FRI cohort (11.7% and 8.5%, respectively). CONCLUSIONS: Staphylococci and GNB were responsible for the majority of infections in both PJI and FRI. Empirical antimicrobial therapy should focus on the coverage of Staphylococci in PJI and GNB in FRI, and infections caused by MDROs should be more vigilant in FRI, while the high incidence of MRCoNS in PJI should be noted, which could guide for the formulation of more accurate empirical antimicrobial regimens. Targeted therapy for FRI caused by A. baumannii and PJI caused by C. albicans needs to be further investigated. Our study reports significant differences in pathogen distribution between the two infections and provides clinical evidence for studies on the mechanism of implant-associated infection.


Assuntos
Anti-Infecciosos , Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Vancomicina , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Infecções Relacionadas à Prótese/epidemiologia , Staphylococcus , Anti-Infecciosos/uso terapêutico , Combinação Piperacilina e Tazobactam/uso terapêutico
15.
BMC Musculoskelet Disord ; 24(1): 40, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650473

RESUMO

BACKGROUND: This study was aimed to investigate whether the application of platelet-rich plasma (PRP) combined with ß-tri-calcium phosphate (ß-TCP) grafts after core decompression (CD) could improve the clinical outcomes of early stage of avascular necrosis of femoral head. METHODS: Forty-five (54 hips) patients with Ficat-Arlet classification stage I-II treated by CD with ß-TCP grafts with or without the application of PRP from July 2015 to October 2020 were reviewed. Group A (CD + ß-TCP grafts) included 24 patients (29 hips), while group B (CD + ß-TCP grafts + PRP) included 21 patients (25 hips). Visual analogue scale (VAS) score, Harris hip score (HHS), change in modified Kerboul angle and the hip joint survival were evaluated and compared between the groups. Patients had a mean follow-up period of 62.1 ± 17.2 months and 59.3 ± 14.8 months in group A and group B, respectively. RESULTS: The mean VAS scores in group A was significantly higher than group B at the 6 months (2.9 ± 0.7 vs 1.9 ± 0.6, p < 0.01) and final follow up postoperative (2.8 ± 1.2 vs 2.2 ± 0.7, p = 0.04). The mean HHS in group A was significantly lower than group B at the 6 months (80.5 ± 13.8 vs 89.8 ± 12.8, p = 0.02). However, at the final follow up, there is no significant difference between the groups (77.0 ± 12.4 vs 83.1 ± 9.3, p = 0.07). The mean change in modified Kerboul angle was -7.4 ± 10.6 in group A and -19.9 ± 13.9 in group B which is statistically significant (p < 0.01). Survivorship from total hip arthroplasty were 86.2%/84% (p = 0.86) at the final follow up, which was not statistically significant. No serious complications were found in both groups. CONCLUSIONS: A single dose of PRP combined with CD and ß-TCP grafts provided significant pain relief, better functional outcomes, and delayed progression in the short term compared to CD combined with ß-TCP grafts. However, the prognosis of the femoral head did not improve significantly in the long term. In the future, designing new implants to achieve multiple PRP injections may improve the hip preservation rate.


Assuntos
Necrose da Cabeça do Fêmur , Plasma Rico em Plaquetas , Humanos , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/cirurgia , Resultado do Tratamento , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/cirurgia , Descompressão Cirúrgica/efeitos adversos , Fosfatos de Cálcio/uso terapêutico , Transplante Ósseo/efeitos adversos
16.
IEEE Trans Neural Netw Learn Syst ; 34(5): 2220-2233, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34464279

RESUMO

This article proposes a hybrid systems approach to address the sampled-data leaderless and leader-following bipartite consensus problems of multiagent systems (MAS) with communication delays. First, distributed asynchronous sampled-data bipartite consensus protocols are proposed based on estimators. Then, by introducing appropriate intermediate variables and internal auxiliary variables, a unified hybrid model, consisting of flow dynamics and jump dynamics, is constructed to describe the closed-loop dynamics of both leaderless and leader-following MAS. Based on this model, the leaderless and leader-following bipartite consensus is equivalent to stability of a hybrid system, and Lyapunov-based stability results are then developed under hybrid systems framework. With the proposed method, explicit upper bounds of sampling periods and communication delays can be calculated. Finally, simulation examples are given to show the effectiveness.

17.
Soft Matter ; 18(38): 7360-7368, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36124911

RESUMO

Three-dimensional (3D) bioprinting technology, allowing rapid prototyping and personalized customization, has received much attention in recent years, while regenerated silk fibroin (RSF) has also been widely investigated for its excellent biocompatibility, processibility, and comprehensive mechanical properties. However, due to the difficulty in curing RSF aqueous solution and the tendency of conformational transition of RSF chains under shearing, it is rather complicated to fabricate RSF-based materials with high mechanical strength through extrusion bioprinting. To solve this problem, a printable hydrogel with thixotropy was prepared from regenerated silk fibroin with high-molecular-weight (HMWRSF) combined with a small amount of hydroxypropyl methylcellulose (HPMC) in urea containing aqueous solution. It was found that the introduction of urea could not only vary the solid content of the hydrogel to benefit the mechanical properties of the 3D-bioprinted pre-cured hydrogels or 3D-bioprinted sponges, but also expand the "printable window" of this system. Indeed, the printability and rheological properties could be modulated by varying the solid content, the heating time, the urea/HMWRSF weight ratio, etc. Moreover, the microstructure of nanospheres stacked in these lyophilized 3D-bioprinted sponges was interesting to observe, which indicated the existence of microhydrogels and both "the reversible network" and "the irreversible network" in this HMWRSF-based pre-cured hydrogel. Like other HMWRSF materials fabricated in other ways, these 3D-bioprinted HMWRSF-based sponges exhibited good cytocompatibility for dental pulp mesenchymal stem cells. This work may inspire the design of functional HMWRSF-based materials by regulating the relationship between structure and properties.


Assuntos
Bioimpressão , Fibroínas , Bioimpressão/métodos , Fibroínas/química , Hidrogéis/química , Derivados da Hipromelose , Impressão Tridimensional , Reologia , Seda , Engenharia Tecidual/métodos , Alicerces Teciduais/química
18.
Food Res Int ; 156: 111344, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651090

RESUMO

A new Aspergillus niger whole-cell catalyst was cultured for the cascade hydrolysis of hesperidin (HES) to produce high-value hesperetin-7-O-glucoside (HG) and hesperetin with high conversion (above 90%). Moreover, the inducers used were shown to be useful for cell growth and to induce cells to produce specific enzymes. Remarkably, the type of inducers determined whether the cells can hydrolyze HES. The product composition was also controllable by adjusting different inducers. Transcriptome analysis suggested that both naringin-vs-blank group and saccharose-vs-blank group had obviously difference in gene expression. The naringin-vs-blank group was mainly up-regulated differentially expressed genes (DEGs), while saccharose-vs-blank group was mainly down-regulated DEGs. The Gene Ontology (GO) analysis showed that whether naringin or saccharose was added as an inducer would greatly affect the catalytic activity of cells. Furthermore, 3 genes related to rhamnosidase, 14 genes related to glucosidase and 5 genes related to hydrolase activity were found. These genes were not only involved in rhamnosidase and glucosidase activities, but also spliceosome and the sucrose and starch metabolic pathways. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the results of transcriptome sequencing were reliable. This study gave a new approach to hydrolyze HES, and new perspectives to understand the mechanisms associated with the hydrolysis of whole-cell catalyst.


Assuntos
Citrus , Aspergillus , Aspergillus niger/genética , Flavonoides , Glucosidases , Hidrólise , Sacarose , Transcriptoma
19.
RSC Adv ; 12(27): 17208-17216, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35755578

RESUMO

The poor mechanical properties of chitosan physical hydrogels seriously hinder their application in the biomedical field. Inspired by the structure of cell tissues, a novel chitosan nanofiber (CSNF)/Hyaluronic acid (HA)/ß-glycerophosphate disodium (ß-GP) drug-loaded hydrogel was prepared by micro-dissolution and physical crosslinking. The hydrogel has a "Branch-Fruit" structure and exhibits excellent mechanical properties, good biocompatibility and cell-adhesion properties. Human cancer cells (HeLa) can adhere to the hydrogel surface, which might facilitate tumor site-specific administration of drugs. This material also exhibits high pH sensitivity, with which drug release can be triggered under acidic conditions at pH 4.00. The mechanical strength and drug release behavior of this hydrogel can be easily adjusted by varying the CSNF content.

20.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631965

RESUMO

The majority of chitosan-based bone tissue engineering (BTE) scaffolds have the problem of poor mechanical properties. However, modifying chitosan with conventional silane coupling agents to improve the mechanical properties of scaffolds will introduce additional complications, including cytotoxicity and poor biocompatibility. In this study, two types of organic−inorganic composite scaffolds (F-A-T0/T3/T5 and F-B-T5-P0/P0.5/P1.5/P2.5) were prepared using chitosan nanofibers (CSNF) prepared by the beating-homogenization method, combined with the sol−gel method, and further introduced polyvinyl alcohol (PVA). The F-A-T3 and F-B-T5-P1.5 exhibited interconnected pore and surface nanofibers structures, high porosity (>70%), outstanding swelling properties, and a controllable degradation rate. The Young's modulus of TEOS: 5.0% (w/w), PVA: 1.5% (w/w) chitosan fiber scaffold is 8.53 ± 0.43 MPa in dry conditions, and 237.78 ± 8.86 kPa in wet conditions, which is four times that of F-A-T5 and twice that of F-B-T5-P0. Additionally, cell (MC3T3-E1) experiments confirmed that the two composite scaffolds had great cytocompatibility and were predicted to be used in the future in the field of BTE scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA